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Abstract 

Crystalline silicon solar cells use high cost processing techniques as well as thick materials 

that are ~ 200µm thick to convert solar energy into electricity. From a cost viewpoint, it is highly 

advantageous to use thin film solar cells which are generally made in the range of 0.1-3µm in 

thickness. Due to this low thickness, the quantity of material is greatly reduced and so is the 

number and complexity of steps involved to complete a device, thereby allowing a continuous 

processing capability improving the throughput and hence greatly decreasing the cost. This also 

leads to faster payback time for the end user of the photovoltaic panel. In addition, due to the 

low thickness and the possibility of deposition on flexible foils, the photovoltaic (PV) modules 

can be flexible. Such flexible PV modules are well suited for building-integrated applications and 

for portable, foldable, PV power products.  

For economical applications of solar cells, high efficiency is an important consideration. 

Since Si is an indirect bandgap material, a thin film of Si needs efficient light trapping to achieve 

high optical absorption. The previous work in this field has been mostly based on randomly 

textured back reflectors. In this work, we have used a novel approach, a periodic photonic and 

plasmonic structure, to optimize current density of the devices by absorbing longer wavelengths 

without hampering other properties. The two dimensional diffraction effect generated by a 

periodic structure with the plasmonic light concentration achieved by silver cones to efficiently 

propagate light in the plane at the back surface of a solar cell, achieves a significant increase in 

optical absorption. Using such structures, we achieved a 50%+ increase in short circuit current in 

a nano-crystalline (nc-Si) solar cell relative to stainless steel.  In addition to nc-Si solar cells on 

stainless steel, we have also used the periodic photonic structure to enhance optical absorption 

in amorphous cells and tandem junction amorphous/nano-crystalline cells. These structures 

have been fabricated on flexible plastic substrates.  

We will describe the use of periodic structures to achieve increased light absorption and 

enhanced photocurrents in thin film solar cells, and also compare them systematically with 

other textured substrates. We discuss the various technological aspects and obstacles faced 

before successful fabrication of such structure, and during the fabrication of solar cells on these 

structures. The ideas of periodic texturing and random texturing will be compared and an 

implementation of them together will be discussed.   
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1. Introduction 

1.1 Motivation 

Our society has been continually consuming resources at a rapidly increasing rate. The 

increasing consuming capacity has filled in the necessity to produce not only more energy, but 

also more effectively to fill in the gap. In history, one very good example would be the Industrial 

revolution which made possible the advent of many types of machinery that we take for granted 

today, leading to more modernized societies.  The growth has continued; technologies have 

advanced, so has our capability to make better and more machines. This has also lead to an 

ever-growing requirement of more energy to sustain this modern society.  This is where the 

requirement of various sources of energy emerge which include non-renewable sources such as 

fossil fuel based from oil, coal or natural gas and nuclear and the renewable sources such as 

solar, wind, hydro-electric, geothermal and biomass based. 

Since we have mentioned two types of energy, there also comes the issue of consumption 

of resources wherein the non-renewable sources  are getting consumed at an alarming rate 

which leads to the question till when would they last. It is also the nature of these non-

renewable sources to be pollutant to the environment causing global warming which threatens 

our future on this planet. Nuclear has always had safety issues attached to it lately proven by 

the unfortunate events during the tsunami in Japan in March 2011. In addition oil has also seen 

it’s own share of unfortunate events which has led to polluting the environment, for eg: the BP 

oil spill in 2010 or the coal ash spill in Tennessee in 2008. These environmental factors also have 

led to question of sustenance, where we not only produce enough energy for the present but 

also safeguard the interests of the future generations. Due to all these factors there has been 

increasing interest in renewable energy sources. 

Among renewable energy sources, one of the most important ones is solar energy, where 

the energy from the sun is absorbed by solar absorber layer and converted to electricity. The 

sun continually provides huge energy flux towards the Earth and about 70% of which reaches 

the Earth’s surface (1040 W/m2). In factual terms the sun provides double the energy in a year 

than all the non-renewable sources together. The planet already converts a lot of energy from 
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the sun 3000 Exa-Joule through photosynthesis, which can be later on be used as biomass. But 

that is still a miniscule amount compared to the energy that is received by the Earth from the 

Sun.  

Currently the solar energy industry is dominated by crystalline silicon solar cells. The most 

promising and most studied solar device that has been studied is the crystalline silicon solar cell, 

which is composed of mono-crystalline or polycrystalline silicon synthesized from rigid modules. 

The cost of silicon in pure form still remains costly due to the processing involved, not just that 

the post processing to make a solar cell is also high.  

Crystalline silicon uses a high cost of the silicon feedstock through material which may be > 

250µm, whereas thin film solar cells are generally made in the range of 0.1-3µm in thickness. 

Due to this low thickness of material, the quantity of material is greatly reduced, and so is the 

number and complexity of steps involved to complete a device, thereby allowing a continuous 

processing capability improving the throughput and hence decreasing cost greatly. This also 

leads to faster payback time for the consumers. In addition, due to the low thickness a 

possibility of flexible modules come in, which allows for portable use and more robust use as in 

building integrated products which could also incorporate some aesthetic applications.  

The main goal of improving a solar cell is to improve the power conversion efficiency. Silicon 

is a material with an indirect bandgap as well as long absorption length which make it harder to 

absorb long wavelength photons in the red and infra-red regions of the spectrum. But increasing 

the thickness of the device means more material or higher cost, and in the case of thin film 

devices which need built-in electric field assist thicker materials could be detrimental. So, there 

has been considerable research in the area of developing light trapping structures for thin film 

solar cells. Most of these light trapping structures have been based on randomly textured back 

reflectors. In this work we have tried to optimize periodically designed back reflectors for use in 

the solar cells to improve current density of the devices by absorbing longer wavelengths. 

Thin film solar cell require a backing material as in a substrate on which they can be grown 

and if we can use a cheap substrate that is abundantly available it would lower the production 

costs. The use of plastic materials which are abundantly available and easily processed, provides 

the added advantage of being light weight and flexible, making them easily installable as well as 
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the ability to be integrated with other products for smarter applications. This work deals with 

growth of thin film silicon solar cells on periodic light trapping structures on flexible substrates. 

1.2 Fundamentals of Solar cell 

A solar cell is an electrical device that converts energy from the sunlight to provide 

electricity. This effect is also known as photovoltaic effect which is the creation of voltage or 

current on exposure to light. Therefore solar cells are also called photovoltaic cells. Sun light 

contains streams of photons and these photons when incident on a semiconducting material 

may be absorbed, reflected or passes through. The part of the sunlight that is not reflected can 

excite an electron from the valence to conduction band such that it can result in producing 

electricity when attached to load as shown in Figure 1.1. As the semiconductor absorbs the light 

intrinsic carriers are excited and an internal field in the material helps electron to move towards 

the n-type semiconductor and holes towards the p-type semiconductor. When a load is 

connected the carriers flow out of the cell, leading to production of electricity. An array of this 

type of solar cell can be connected together to provide power for the required usage. 

 

Figure 1.1: Schematic diagram of a solar cell 

1.3 Materials for solar cells 

There are a lot of materials that have been used for solar cells and they are based on the 

various factors namely 
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1. Absorption coefficient: It is the ability of a material to absorb at a particular wavelength; 

a good material should have high absorption capability over a wide range of 

wavelengths.  

2. Bandgap: It is a very important property as it is the minimum energy required to excite 

an electron from the valence band to the conduction band, can also be defined as 

minimum energy required to move an electron from a bound to mobile state. The band 

gap is very important as all energies below the bandgap are not absorbed. The energy of 

photo-excited electrons above the bandgap is lost as heat. A preferable bandgap for a 

single layer solar cell is defined by conversion efficiency which was described by the 

Shockley Queisser limit [1], with the highest conversion for Gallium Arsenide which has 

a bandgap of 1.424eV. But, there exists ways to overcome the Shockley Queisser limit 

which will be discussed later. 

3. Cost of Materials: This is an obvious factor in any manufacturing unit. It is not only 

dependent on how abundant the material is, but on other factors. The purity of material 

also plays a role in the performance of a solar cell, as the semiconducting layers also 

have to carry free carriers across them to be used for electricity whereas impurities tend 

to hamper the transport. Similarly crystallinity also starts to play a role then as carriers 

have to then move through a non-uniform area. 

4. Process ability: Manufacturing the solar cell plays an important role in its final cost. 

Simple production methods are preferred to complex ones, as well as the reproducibility 

in large area/volume is also a requirement for low cost production.  

1.3.1 Silicon based Materials 

1.3.1.1 Crystalline silicon 

The Solar industry is dominated by crystalline silicon, which is the more pure form of silicon. 

Silicon is widely available on the earth’s crust and is widely used by the microelectronics 

industry. The purification of silicon starts with the reduction of sand/silica with a source of 

carbon (charcoal/coal) at high temperatures of 1500-2000⁰C in an arc furnace. Further 

purification is also done to remove impurities, where the microelectronics industry uses very 

good quality or highly pure silicon which also drives up the cost of the feedstock material. Solar 

grade silicon can tolerate a little higher impurity levels and to decrease costs of production. A 
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standard method of refining is the Czokralski process where a seed crystal is used to pull silicon 

of desired orientation from a bath of molten silicon.  There also exist other methods of refining 

silicon which are not discussed here. The solar industry uses a balance of economics, where 

mono-crystalline silicon is used for high efficiency at a higher cost, whereas poly-crystalline 

silicon is also used with relatively lower efficiency but gain in the cost of the feedstock material. 

The recent trends have turned towards lower thickness of high purity silicon to reduce costs, 

without losing more material during the process of slicing wafers. 

1.3.1.2 Amorphous Silicon (a-Si) 

Amorphous silicon is a widely studied material. It has a high absorption coefficient, but due 

to the disordered nature it was not used as a photovoltaic material as it contained many 

dangling bonds which acted as recombination centers. It was not until Chittick et. al. used 

hydrogen to passivate the bonds to make a more stable material with less defects that it was 

seriously considered as a photovoltaic material [2]. Another important improvement was that a-

Si:H could be deposited through CVD methods by using different gas precursors which could be 

doped to form the n+ and p+ regions. Amorphous silicon based alloys can also be produced by 

alloying with carbon for higher bandgap, and germanium for lower bandgap. 

1.3.1.3 Nano crystalline Silicon (nc-Si) 

This is a material formed from small scale ordered silicon or as the name suggests it contains 

nano-crystallites of silicon in an a-Si:H matrix. It was initially believed to be a very poor material 

for solar cells. But the material was further developed by A. Shah et. al. [3] of IMT Neutchatel to 

give rise to a material which behaved closer to c-Si than a-Si. 

1.3.2 Polycrystalline thin materials 

There are other thin film materials also which show capability to absorb solar energy for 

production of electricity. Figure 1.2 shows the absorption coefficient where two more 

prospective thin film photovoltaic materials are shown  
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Figure 1.2: Absorption coefficient of thin film photovoltaic materials[4] 

1.3.2.1  CIS or CIGS 

CIS/CIGS is a solid solution of Copper Indium gallium Selenide and is a direct bandgap 

semiconductor which has very high absorption coefficient as seen in Figure 1.2. It is generally 

fabricated on glass substrates and as it uses a solid solution the processing window is narrow 

since it involves four elements. There also has been a lot of discussion for replacing costly 

material like indium and gallium which not only increase production costs, but also in case of 

indium there are other competing industries which would lead to a lack of material for large 

scale production. There has been research to replace Indium by zinc and gallium by tin 

respectively. Although CZTS uses non-toxic and earth abundant material, it is still being 

researched and only small scale production, and more work is required for commercialization.  

1.3.2.2 CdTe 

Cadmium telluride has grown at an exceptional rate is the last few years due to it’s cheaper 

production costs. The major growth has come from First Solar and GE has also shown interest in 

manufacturing CdTe solar cells. Although there is a low cost, it does suffer from the use of 

cadmium which is a toxic material which may cause an issue during disposal. The disadvantage 

are that Cadmium is a heavy metal and Tellurium is not a widely abundant material. The major 
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problem in the application of CdTe cells have been forming the ohmic contact where Cu2S was 

applied for a long time. But Cu2S also suffers from stability issues. 

1.3.3 Single crystal solar cells 

In single crystal solar cells, the most widely used solar cell is based out of gallium arsenide. 

As it is a direct bandgap material, efficiencies very close to their theoretical limit can be realized 

according to various predictions [5, 6]. In practice an efficiency of 28.8% has already been 

achieved by Alta devices [7]. These solar cells are also in use with multi-junction solar cells which 

are complicated as materials of different band gaps have to be made with each of the layers 

giving equal currents. They are able to demonstrate efficiency in excess of 40% [7]. However the 

cost of manufacturing is very high and additionally the sun does provide a constant energy flux 

through the day, so they are more functional for space application where the cost would not be 

a major factor. 

1.3.4 New Technology materials 

Organic semiconductors are light and flexible, employing simple processing techniques. 

Since they are made out of simple carbon and hydrogen the idea is to tailor properties as 

required by adding side chains or ligands. There are some obstacles also especially dealing with 

it’s reliability or long term stability and the effect of environmental factors on it. Nevertheless, a 

lot of work is going on developing new materials for polymer solar cells, small molecule based 

solar cells and dye sensitized solar cells [8-10]. 

There are also other groups looking at very cheap materials which are widely available to fill 

in as solar cells. There is research into pyrites which are cheap and abundantly available, and can 

be used for solar applications for large scale deployment [11-13].  
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2. Review of Literature 

Although the photovoltaic effect was discovered in the early 20th century, it was not until 

the 1950’s that major work started on PV technologies.  PV technologies focused not just the 

work on crystalline silicon p-n junctions, but also the development of amorphous silicon (a-Si) as 

a PV material. The early studies on a-Si involved mostly growth of a-Si by evaporation and 

sputtering techniques which resulted in very pure quality material. Although it had good 

absorption properties, it also had a very high defect density due to its disordered nature leading 

to high recombination and poor conversion of light to current and hence did not lead to good 

solar cells, which required carriers to be collected after being excited by absorbed photons.  

2.1 Hydrogenated amorphous Silicon (a-Si:H) 

Hydrogenated amorphous silicon (a-Si:H) generated many applications to the study of 

disordered materials where the electronic defects could now be passivated with hydrogen 

which resulted in material with much better electrical properties. Today, all electronic grade 

amorphous silicon is an alloy of silicon and hydrogen. The initial experiments also involved the 

breaking down of silane at high temperatures [2] and even today silane is the main precursor 

gas used for deposition of a-Si:H. One of the most important discoveries in this area was the 

ability to dope a-Si:H to either n-type or  p-type by adding phosphine or diborane respectively to 

the gas mixture of the plasma discharge used for depositing a-Si:H [2, 14]. This ability to dope a-

Si in a glow discharge enabled device fabrication and initiated a lot of interest in further 

development of the material for fabricating thin film transistors, solar cells etc. 

2.1.1 Atomic Structure 

It is very important that we distinguish a-Si:H from c-Si which exhibit similar properties 

when measured optically, but does not have the same performance in a device. This distinction 

can be explained by looking closely at the atomic structure. As shown in Figure 2.1 c-Si has long 

range order, where every silicon atom is covalently bonded to four neighboring atoms. This 

makes the entire set of bonds equal in length and energy, all bond angles are same. 

Unlike c-Si, a-Si:H has a random network, with similar short range order as the crystal i.e. 

most silicons are covalently bonded with four neighbors (saturated). This short range order is 

what makes a-Si:H have properties similar to c-Si. Although, the bond lengths and bond energies 
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deviate from that of c-Si, a distribution of bond angles exists with multiple local atomistic 

geometries. In the absence of hydrogen there are a lot of voids or dangling bonds or 

unsaturated bonds which leads a large number of electronics defects which cannot lead to 

effective devices. A dangling bond is when the silicon has 3 or lower neighbors and cannot 

covalently share its four electrons and is left with one or more unpaired electrons. 

Hydrogenation is the process of using the single electron of hydrogen to form a bond with the 

unpaired electron; this method is called hydrogen passivation.  

 

Figure 2.1: Atomic structure of silicon lattices (Left) c-Si (middle) a-Si:H and (right) nc-Si:H 

[15] 

The density of states for c-Si and a-Si:H vary significantly due to presence of point defects or 

dangling bonds. Due to the presence of dangling bonds, a range of defects are present 

throughout the forbidden electronic energy gap state unlike c-Si whose energy gap state has no 

available states ideally in the bandgap region. A representative figure of the band diagram is 

shown in Figure 2.2 which shows that there are tail states and an mid gap defect states in a-Si:H. 

The tail states play a critical role in the performance of the solar cell and it is described by the 

Urbach energy which gives a width of the tail states. The concept of bandgap deviates from the 

classical model for a-Si:H where so many states are available in the bandgap and hence the term 

mobility gap is used to define band gap in a-Si:H. The typical value of mobility gap in a-Si:H is 

~1.8eV which is larger than various optical gaps, other definitions of bandgap called Tauc’s gap 

also exists and will be mentioned later. 
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Figure 2.2: Density of state diagram for c-Si and a-Si [16] 

It is especially important to talk about the optical properties of a-Si:H when discussing the  

application for solar cells. The optical properties make a-Si:H a very good material for 

application as a solar cell as seen in Figure 2.3. Amorphous silicon has a higher bandgap than c-Si 

but at higher energy it has a higher absorption coefficient which is attributed to the disordered 

network making it behave as a direct bandgap semiconductor, and absorbing photons more 

effectively. 

 

Figure 2.3: Absorption coefficient of silicon (a-Si:H, c-Si and µc-Si)[17] 
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2.1.2 Doping and Alloying 

Doping played a very important role in the development of a-Si:H as a material for electronic 

devices as it was believed that due to high defect densities in a-Si, it could not be doped. The 

calculated mid-gap defect density was ~1021/cm3 for un-hydrogenated a-Si, which was 

decreased by hydrogen passivation to ~1015-1016/cm3. This a-Si:H could be doped, but it took 

almost 10 years for a systematic study by Spear and LeComber [14] to show that it was possible 

to dope amorphous silicon by additional diborane and phosphine to their glow discharge 

deposition method. In the same paper [14], they also showed that it was possible to change the 

conductivity by a factor of 108 ,as well as to change the activation energy. This method has been 

effectively applied today by using different precursor gases especially in PECVD to change 

properties of films. Doping in a-Si:H is explained by Street et. al [18] by the model named as 

auto-compensation model. It is important to note also that when we increase doping in a-Si:H, 

the Fermi energy shifts close to the band tail states, so ionized doping atoms are compensated 

by space charge in the tail states so the Fermi energy would never move very close to the band 

edges. 

Another important advantage is that the bandgap of a-Si:H can be varied by alloying it with 

other miscible elements like germanium and carbon. Germane (GeH4) and methane (CH4) are 

the precursor gases used in the plasma CVD process to deposit alloyed a-Si,Ge:H or a-Si,C:H. The 

first successful alloying is actually hydrogenation which effectively creates bandgaps from 

~1.5eV to 2eV. But by adding miscible elements such as germanium to lower the bandgap and 

increase absorption coefficient due to additional germanium allows to make materials which are 

applicable in tandem junction solar cells (discussed later). The addition of carbon helps to 

increase bandgap and can be used as the top cell for a tandem junction cell. There has been a 

lot of very recent development of doping oxygen to make a wide bandgap a-SiO:H alloy which 

can be doped both n-type and p-type and have been used to replace the n+ or p+ layers 

respectively which prove to be efficient due to their higher bandgap [19-23]. 

2.1.3 Device structure 

In c-Si the solar cell design is basically a wide p-n junction. However, a-Si:H cannot function 

in the same manner. Firstly, the diffusion length of carriers is very small in a-Si:H compared to c-

Si, instead a modified structure of p-i-n or n-i-p is used where the ‘n’ and ‘p’ stand for n-type and 



www.manaraa.com

12 
 

p-type doped layers and ‘i’ stands for intrinsic or undoped layer. Since diffusion is limited, the 

carrier collection is heavily dependent on the built-in electric field created by the difference 

between the Fermi levels of the p-type and the n-type layer. The carrier collection of a solar cell 

is therefore dependent on the electric field and hence the thickness of absorbing intrinsic layer 

has to be designed carefully to have enough electric field for good carrier collection.  

An important factor affecting a-Si:H solar cells is the light induced degradation also known 

as the Staebler Wronki effect [24]. The loss in efficiency due to this long term effect due to light 

exposure which can partly be reversed by annealing at ~180-200⁰C has been studied widely, 

although the exact nature of defects is still being studied and predicted [25-30]. Unfortunately, 

there has been no known way to completely eliminate light induced degradation, but there have 

been efforts to improve the cell quality by different methods such as chemical annealing [31-33] 

to improve the quality of the intrinsic layer, using thinner intrinsic layer with effective light 

trapping methods [34-38] and introducing  materials like Nano crystalline Silicon (nc-Si) which 

are stable to light exposure. 

2.2 Nanocrystalline Silicon (nc-Si:H) 

Nanocrystalline Silicon (nc-Si:H) also called microcrystalline silicon (µc-Si), is a material in 

between the ordered c-Si and the random network a-Si:H. It contains crystallites of nanometer 

size (10-75nm) in a matrix of a-Si:H. The first development was described by S. Veprek and 

Mareek in 1968, other groups [39-42] followed through to develop it in PECVD deposition not 

only for solar cells but also for thin film transistors. But, these materials were of poor quality due 

to unintentional doping due to the incorporation of oxygen during film growth, as well as the 

deposition process was slow. Significant development came through with the work done at IMT 

Neuchatel [43, 44] to achieve conversion efficiency of 7.7% in a nc-Si:H solar cell [45]. 
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Figure 2.4: TEM image of growth of nc-Si:H showing conical growth [46] 

 

Figure 2.5: Schematic diagram showing the change in microstructural characteristics of nc-

Si:H with crystallinity[17] 

2.2.1 Growth Mechanisms 

The growth mechanism in nc-Si:H silicon is a highly researched area and there are different 

methods followed by different groups. The primary difference from a-Si:H growth is the use of 

higher power and a high hydrogen dilution. It is important to mention here that dilution signifies 

the ratio of hydrogen flow rate to silane flow rate in this work, but other groups do have 

different methods of explaining dilution ratios. Although all the groups grow nc-Si:H consisting 

of an a-Si:H tissue, otherwise known as a incubating layer that provides sites for nucleation of 

crystallites for nc-Si:H growth (Figure 2.4) where the nc-Si:H growth is shown from the 

nucleation sites. The phenomenon of nucleation and the different parameters that affect it have 

been studied widely. It has been widely accepted by various groups that nc-Si:H growth takes 
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place by first nucleation and then growth in conical fashion [46-49]and then columnar growth 

takes place as shown in Figure 2.5.  

There have been various models proposed for the growth of nc-Si:H. The Surface diffusion 

model proposed by Matsuda et. al. suggests that hydrogen plays a crucial role in nucleation of 

crystallites by providing local heating. SiH3 radicals diffuse on the film and are adsorbed at 

theses preferential sites generated by local heating and then crystal growth continues through 

epitaxial growth [50]. The model suggests that the growth mainly depends on the substrate 

temperature, number of ions impinging and number of dangling bonds. While Dalal et. al. 

propose that Si-H bond energy ~3eV is hard to break [51]. Robertson et. al. also propose that 

excess hydrogen can be removed by formation of hydrogen complex . The Etching model 

proposed by C.C.Tsai et. al. which proposed that hydrogen atoms can break weak Si-Si bond to 

leave behind a more ordered structure where more layers can be added [52]. Chemical anneal 

or layer by layer model suggests that hydrogen in the bulk helps to break weaker bonds such 

that stronger bonds can be formed. There has been research in this area by various groups for 

stabilization of a-Si:H cells[32, 53-56].  

Nc-Si:H has crystallites of size ranging from 10-75nm with the boundaries formed by a-Si:H 

and hydrogen mostly as shown in Figure 2.6(c). Therefore, the atomic structure is intermediate 

between c-Si and a-Si:H (see Figure 2.6(b)) where the crystallites represents the atomic 

structure of c-Si but the tissue is same as a-Si:H. The grain boundaries are rich in hydrogen 

content, shown by simulations done by Pan et. al. where they carry out molecular dynamic 

simulations [57]. A model developed by Kocka et. al. for the growth of nc-Si:H is shown here 

where they explain that after nucleating nc-Si grains, many small crystallites grow together in 

conical fashion and as thicker material is grown, the two cones eventually collide [49]. Smaller 

cones of crystallites have much lower defect density and therefore do not present a barrier for 

band like transport whereas when larger cones collide they form large grain boundaries. In 

addition, these grain boundaries are also potential sites for oxygen, carbon, nitrogen and even 

hydrogen to be trapped in during the growth process. These impurities can later segregate at 

the grain boundaries and have a different mobility gap or act as recombination centers.  
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Figure 2.6: (a) Density of states for nc-Si:H[49] ,(b) Schematic of atomic structure of nc-Si:H 

and (c) Representation of crystallites in a-Si:H matrix for nc-Si:H 

2.2.2 Design of Solar cells 

The solar cell design is dependent on the fact that growth starts with nucleation but 

continues to grow in columnar manner and may lead to a very crystalline film as we proceed. 

Various approaches have been used by different groups to overcome the increasing crystallinity 

during growth. When we grow a film with the same power and gases as the film grows thicker 

the crystallinity also increases and the micro crystallites size increases with the defect density, 

so it is necessary to control the formation of such large crystallite and keep the defect density 

low. 

The Hydrogen dilution profile is used by many groups [58-60] to control the crystallinity as 

the film is growing by decreasing the dilution as it grows to control the crystalline volume in the 

film. The growth of nc-Si:H films at constant dilution with other parameters kept constant is 

shown in Figure 2.7(b) where it has been shown that crystallinity continuously increases as 

thickness increases. Another important result is shown in Figure 2.7(a) which shows the Raman 

crystallinity (explained later) where the crystalline volume fraction is not changing with 

increasing thickness of the film when hydrogen dilution is employed.  
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Figure 2.7: (a) Raman spectra nc-Si:H of different thickness [61] and (b) Increasing 

crystallinity at constant dilution [62] 

The Power profile is based on the change of crystallinity due to power used to grow films, 

and has been found to be less widely used than hydrogen profile which may be due to 

additional factors affecting the growth when power is changed. But, recently good device 

quality has been shown by Han et. al.[63], who found that reduced ion bombardment helped 

improve their film quality. The crystallinity as well as the grain size remains in the same order 

when power profiling is employed is similar to that found in the hydrogen dilution case, as show 

in Figure 2.8. 

 

Figure 2.8: Variation of crystallinity with i-layer thickness for constant and profiling of 

power [63]  
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The Superlattice design is a method of nc-Si:H layer by layer groeth where the growth of nc-

Si:H and a-Si:H layers are alternated. The growth of nc-Si:H layer is inhibited by a thin a-Si:H 

layer which helps in termination of the crystallite growth and then enables re-nucleation and 

growth of nc-Si:H until it is again terminated by an a-Si:H layer. This process is repeated many 

times to achieve desired thickness. A scheme of the design is displayed in Figure 2.9 showing the 

alternate layers. The thickness of both the layers plays significant role in the design and 

performance of the solar cell, for example thicker a-Si:H layers may provide a barrier for carrier 

flow and thicker nc-Si:H layers make it too crystalline. There is an in depth study of the design 

and fabrication of superlattice nc-Si:H solar cells in the doctoral thesis by A. Madhavan [64]. 

 

Figure 2.9: Schematic diagram of Superlattice structure 

Superlattice design of fabricating devices has advantages for commercial use since the gas 

ratios would remain constant and the only change is the power cycling which can lead to 

amorphous or nanocrystalline films making the process less susceptible to processing errors. 

Moreover, the process windows in case of hydrogen profile devices are not that wide as shown 

in Figure 2.10 which makes it harder to achieve during commercial application. The thickness of 

the layers is controlled by changing the time of deposition of each layer and can easily be 

automated by using computer controls. The major advantage of cycling comes from the fact that 

the crystallinity remains independent of thickness as show in Figure 2.11. Further discussions 

have been made about the superlattice structure in latter chapters of the thesis. 
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Figure 2.10: Process window for growth of hydrogen dilution profile devices [64] 

 

Figure 2.11: Comparison of superlattice and constant dilution nc-Si:H films [61] 

2.3 Tandem cells 

The concept of using multi-junction cells is to overcome the Shockley-Queisser limit, which 

defines the maximum theoretical efficiency for the single junction solar cells [1]. The detailed 

plot places silicon very close to the highest conversion efficiency of 33.7% possible. There have 

been various studies to cross this limit to cross this limit and one of the first thoughts is using 

multi junction cells which absorb light in complimentary wavelength ranges to absorb more 
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energy from the spectrum of sunlight. There have been calculations to verify that a maximum of 

~86.8% efficiency can be achieved if infinite numbers of cells are connected in series with solar 

concentrator [65]. For a tandem cell with 2 bandgaps the Shockley-Queisser thermodynamic 

limit is 37% which moves to 42% for 3 bandgaps. A detailed investigation is shown in Figure 2.12 

which suggests that the best matching cells for tandem solar cells is the micromorph solar cell in 

which the bottom cell of low bandgap nc-Si:H and top cell of higher bandgap a-Si:H[66]. We also 

show a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell in which gave an initial efficiency of 

14.6% and stabilized efficiency of 13% [62]. 

 

Figure 2.12: Efficiency limit for p-i-n/p-i-n tandem solar cells[66] 
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Figure 2.13: QE curves of a high efficiency a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar 

cell from the Unisolar group [62] 

Tandem cells can consist of two or more cells connected together; however each additional 

cell comes with an added process complexity. For commercial purposes two or three layers are 

preferred. But, more complex architectures with multiple layers are also being researched 

especially for use in space or for concentrated photovoltaic applications where sunlight is 

concentrated to 10-100 times to a smaller area of the cell. They can be connected either in 

series or in parallel and depending on the connection, in-series the voltage gets added whereas 

in parallel the currents add up, and the cell is limited by the cell of lower current or lower 

voltage respectively. In this thesis most work carried out has been in the series connection 

mode where the voltages get added up and current is limited one of the cells. 

2.4 Light Management 

Light trapping is essential for enhancing efficiency in the solar cells. Silicon is a very good 

material for solar cell with high absorption coefficient, but absorption depth which is basically 

inversely related to the absorption coefficient does not tell same story. A better explanation for 

absorption depth is the distance a photon of a certain wavelength has to travel inside the 

material to get absorbed. In Figure 2.14 the absorption properties of silicon are shown and we 

see that if light passes through a standard wafer of silicon of 300µm (presently wafers for solar 

application are thinner) then longer wavelengths may not be absorbed at a single pass, it is 

difficult to absorb read and near IR wavelengths (λ> 600nm) in silicon solar cells. Making the 
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absorber layer thicker is not the right path as diffusion length is limiting the thickness of the cell. 

Also thicker devices imply higher chance of recombination and hence decrease in open circuit 

voltage (Voc) as well as short circuit current (Isc). This forces the designers to consider light 

management in the solar cells to make sure light can stay longer in the absorber so that it can be 

absorbed. There are also other loss mechanisms involved such as optical losses, recombination 

losses and resistance losses. Light trapping and antireflective coating are ways to reduce optical 

losses. 

 

Figure 2.14: Absorption depth of silicon adopted from data by Green et. al. showing the  

regions where light management is required for absorption due to increases absorption 

depth[67] 

In thin films, we work with lower quality material than c-Si, therefore the diffusion length is 

limited, for example: diffusion lengths of a-Si:H~20-50nm and nc-Si:H~1-5µm. The thickness of i-

layer in a-Si:H is generally below 300nm. Therefore, light trapping is more important in thin films 

as they depend upon the electric field in the device for efficient carrier collection. So there has 

been various strategies to develop light trapping structures and models to enhance absorption 

in the absorber layer.  
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2.4.1 Anti-Reflective Coating (ARC) 

As we had earlier explained that the light incident on the solar cell can optically be either 

reflected, absorbed or transmitted. Anti-reflective coatings have the primary function to 

minimize the reflection from the top surface, but most ARC’s simulatneously work as the top 

contact and therefore must be conductive enough to decrease resistive losses. Although, 

present designs do incorporate metal busbars and fingers to decrease resistive losses, their 

design is important to minimize reflection and shadow effects from these metal lines [68, 69]. 

ARC generally consist of a thin dielectric layer, in case of thin films it is generally a transparent 

conducting oxide (TCO) such as Indium tin oxide(ITO) ,zinc oxide (ZnO) and tin oxide (SnO2); 

more details about their fabrication and properties is given in the next chapter. 

In a very simple case if we need to minimize the reflection, the idea is to choose a thickness 

for the TCO that has destructive interference for the light reflecting back. The calculation is done 

by simple ray model and there is an ideal thickness(d) for each wavelength (λ) which is one 

quarter the wavelength of light in the layer; d= λ/4n , where n is the refractive index of the TCO. 

Also, the ideal refractive index for the TCO is given by geometric mean of the materials i.e 

   √      on either side of the TCO. For c-Si, there is also use of double layer of ARC to have 

less reflection but most thin film use a single layer of ARC to keep low cost of manufacturing. A 

single layer TCO is optimized for a single wavelength and not the entire solar spectrum leading 

to losses in other areas of the spectrum. The addition of texturing by various methods discussed 

later here also help in decreasing light trapping. 

2.4.2 Theoretical model for light trapping 

Crystalline silicon solar cells were developed more aggressively than thin films and so the 

initial research in light trapping methods were also developed for c-Si as the model material. 

Thin film silicon has used the same light concepts. The most famous work accepted for 

theoretical calculation of the limits of light trapping is the work done by Yablonovitch et. al. [70-

72]. They adopt a statistical model where they assume that the light trapping is ideal; and there 

is an ideal loss less reflecting surface which reflects 100% of the light back that reaches the 

lossless reflector equally into all optical modes. The light rays are completely randomized by the 

lambertian scattering surface where all modes are equally populated within the absorber layer. 

The absorber layer has a refractive index (n) such that any light that comes in if scattered at an 
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angle more than the critical angle at the top surface, it would get reflected back into the 

absorber layer by total internal reflection. Therefore, the only loss for incoming light is due to 

any light that escapes through the escape cone when reflected at an angle less than critical 

angle as shown in Figure 2.15, which depends on the refractive index of the involved materials.  

 

Figure 2.15: Schematic diagram for Lambertian reflector 

The maximum path length of the incoming light can be enhanced by 4n2 times the thickness 

of the absorber layer (where ‘n’ is the refractive index of the absorber layer at each 

wavelength). This 4n2 value is also widely known as the Lambertian limit. This has been shown 

by the statistical approach of summing up the trapped rays in the absorber[71] or also 

comparing the area of the escape cone to the total surface area of the sphere for various modes 

in the semiconductor[73]. Finally, in case of silicon which has refractive index of ~3.5 the factor 

of enhancement in path length is ~50. A modified version of the model has also been reviewed 

by Stuart et. al. where they mention that for thin films not all the optical modes are useful, but if 

we took to account just the first three then about ~12-13 times path length enhancement is 

possible [74].  The current research by various groups is to approach or exceed the Lambertian 

limit of  4n2  [73, 75-88]. 

2.4.3 Random or Lambertian 

The basis of light trapping is to increase the path length of light in the absorber layer. if we 

had a surface that was able to change the direction of the incident light; we can not only 
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decrease the reflection of light back (ARC) but also scatter light at different angles in to the 

absorber with additional help from a bottom reflecting surface to keep the light trapped inside 

the absorber layer by multiple reflection including TIR. The light trapping discussed here pertains 

to both substrate and superstrate type structure. There have been various approaches for 

developing these random structures and few methods have been explained here 

2.4.3.1 Annealed/Hot Silver 

Silver is an excellent reflector and has a property of agglomeration when thin films of Ag are 

heated at higher temperature, it agglomerates into islands. The basic idea is that silver has a 

higher affinity towards clustering than other materials and hence it tries to bond to other silver 

atoms close by and forms spherical shaped clusters to minimize energy, or go to its most 

favored state. This property of silver is used by various groups [89-92] to form what is known as 

annealed or agglomerated or hot silver. The process followed is to either deposit silver on a hot 

substrate or deposit silver and then heat at higher temperatures. It is mostly used for the 

substrate type configuration[93] but can also be used in other configurations which are 

discussed in sections 2.4.3.3.2 and notable this is an plasmonic effect discussed in section 

2.4.4.2.  

 

Figure 2.16: Annealing of silver at different deposition pressures with constant 

temperature (500⁰C) and thickness (300nm); (b) σrms= 56.2 nm at P=1 mTorr,(d) σrms = 44.7 nm 

at P= 3 mTorr and (f) σrms = 42.1 nm at P=5 mTorr [91].  
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Figure 2.17: AFM images showing changes in the surface morphology and the surface 

roughness of the Ag films as a function of film thickness(T); (a) σrms = 48.3 nm at T= 100 nm,(b) 

σrms = 56.2 nm at T=300 nm,(c) σrms = 63.7 nm at T= 500 nm and (d) σrms = 88.0 nm at T=700 nm 

[91]. 

A schematic diagram of how silver agglomerates with changing pressure at constant 

thickness and temperature are shown in Figure 2.16 and Figure 2.17 shows the change in 

roughness (σrms) with thickness at constant temperature and pressure of deposition. These 

parameters can change the growth of silver during deposition itself. There exists another 

method to form these structures by first depositing it at room temperature and then annealing 

it at higher temperature to form roughened structures shown in later sections. In case of 

annealing, there is less effect at lower temperatures (~150°C) but on annealing and at higher 

temperatures (~400°C) the agglomeration pace picks up. The requirement (total= specular + 

diffused) is to have good reflection as well as good conduction (coverage all over). It is 

important to mention that the change of substrate has an additional effect not accounted for 

here. 

There are various parameters that needed for fabricating the back reflector with the most 

important being the reflective properties. Unfortunately we also need to deal with roughness, 

since with increased roughness there is a chance of higher defect density which leads to poor 
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device quality or the lowering of Voc and FF[89, 94-96]. So, an optimization is done to find the 

best match for higher current without decreasing the Voc and FF. There have been various 

attempts at this work [61, 89, 97]. It must be mentioned here that silver is not used alone; it is 

used most generally in conjunction with ZnO as the dielectric layer on top for efficient coupling 

of light. ZnO also separates silicon from being in direct contact with the metal to avoid reactions 

and failure during use. 

2.4.3.2 Etched or LPCVD ZnO 

Zinc oxide (ZnO) is an important TCO which has been extensively used in both substrate and 

superstrate type configuration. It works as a TCO so is used for the incoming light and it can also 

be textured using wet chemical etch or CVD processes. There have been various studies on the 

use of ZnO in many different applications for multipurpose use. A lot of work has been 

performed to get lower absorption and higher conductivity as well as forming different 

structures for use for specific application also with multiple texturing on the substrate[98] as 

shown in Figure 2.18. 

 

Figure 2.18: Schematic diagram of use of multiple texturing of the substrate at different 

stages [98] 

There has been a lot of research for development of the chemistry of deposition of ZnO with 

additional dopants to increase conductivity, while maintaining a balance not to increase the 

absorption as it has been seen in case of many groups [99-101]. The most common dopant has 

been Aluminum, while other dopants such as gallium, boron, indium etc. have also been tried 
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for getting a balance between absorption and conductivity [101-105]. Figure 2.19 shows the 

increase of dopants affecting the carrier concentration which leads to lower resistivity when the 

dopant concentration is increased; on the other hand the absorption coefficient also increases 

due to the additional dopant atoms. Therefore, a lot of work has been done to optimize the 

dopant concentrations.  

 

Figure 2.19: Effect of dopants on the (a) carrier concentration and hence the resistivity and 

(b) absorption coefficient [101] 

While using magnetron sputtering on a flat surface, the properties of ZnO is also dictated by 

the chosen target which is predoped with a fixed amount and type of dopant. The deposited 

ZnO is then etched using a dilute solution of hydrochloric acid to get textures on the ZnO [89, 

92, 99, 103, 104, 106-113] as shown in Figure 2.21. Another method of fabricating the textured 

ZnO substrates is by the use of LPCVD ZnO, which is self-texturing i.e. the as deposited films 

grow in pyramid shape and then can be plasma treated to make smoother surfaces or with 

controlled smoothnes as shown in Figure 2.22 and dopants can be added with a greater control 

while deposition to result in various properties [98, 100, 114-116]. 
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Figure 2.20: Increasing roughness of ZnO as time of etching is increased [117] 

 

Figure 2.21: Textures of Al doped ZnO substrates by etching with HCl[99] 
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Figure 2.22: (a) SEM picture of multiple textured ZnO film. (b) SEM picture of a standard 

LPCVD ZnO film. (c) SEM picture of a standard treated LPCVD ZnO film[118] . 

There has also been development to correlate the final roughness of the textured ZnO [89, 

94, 95] to the quality of the device produced, and it has been found that high roughness is good 

for light trapping, but may lead to increase in defect density and in some cases even to crack 

formation [94, 95, 119]. The measures taken are structures without any sharp features, so a 

compromise has to be made with a lower light trapping for better device quality. In case of 

etching this has been taken care by etching less rougher structures[97] and in LPCVD ZnO a 

plasma treatment is used to change from V-shaped to U-shaped structures[95] which results in 

better quality film as shown in Figure 2.23. 

  

Figure 2.23: Crack formed on the V-shaped structures (left) and dense good quality film on 

U-shaped structures 



www.manaraa.com

30 
 

There is also new development of transfer of the optimized textured ZnO structures to 

plastic substrates using nano lithography [76, 120-123]. In this scheme optimized structure is 

chosen and then replicated as shown in Figure 2.24 on plastic substrates.  

 

Figure 2.24: Schematic process flow of substrate and solar cell fabrication for the periodic 

nanocavity substrate (a), the random pyramidal texture (b), and the flat reference [76] 

2.4.3.3 Other Methods 

In addition, to the above two widely used light trapping structures new methods of 

randomly textured substrates are being developed by various groups. These methods are 

diverse and a few of the methods are discussed here briefly. 

2.4.3.3.1 Silica Nanospheres 

Silica nanospheres can be used to form a periodic self-assembled mono-layer which can be 

then coated with a reflecting surface which would reflect light randomly in different directions 

at the bottom for use in substrate type configuration. It is important to get a uniform monolayer 

of deposition using simple methods such as dip coating or spin coating or even costly processes 

as Langmuir-blodgett [124]. In Figure 2.25 a SEM image of a dip coated substrates are shown on 

glass and stainless steel. 
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Figure 2.25: Monolayer of nano sphere particles deposited on glass (left) and stainless 

steel (right) with a layer of Ag deposited on top of the nano spheres [124]. 

2.4.3.3.2 Nanoparticles 

The use of nanoparticles for light trapping is inspired from the plasmonic effect due to the 

light and metal interaction. Silver is generally the choice of metal here due to its low absorption 

in the region of interest and large scattering cross-section. It may be argued that it is similar to 

the concept used in annealed/hot silver but due to their small size they can create surface 

plasmons. A number of groups have studied this phenomenon of both theoretically and 

experimentally [85, 125, 126] and it is similar to concept used in Plasmonics (discussed later). 

2.4.4 Periodic 

The randomly oriented structures do not all have the same morphology and the 

experiments precede the model and the texturing is developed by a database of experimental 

data to guide the process of optimization. The periodic structures are defined as a single unit 

cell translated in various directions where the theoretical models and structure are predesigned 

by using various procedures to predict the light trapping effects and experiments follow. There 

are various groups that work in this area to develop new methods of light trapping using mostly 

nanostructures of different geometry at particular density to achieve higher absorption in the 

active layer [36, 38, 75, 76, 83, 90, 127-160]. There are various periodic structures which may be 

1-D, 2-D or 3-D and they can be used for light trapping. 

 



www.manaraa.com

32 
 

2.4.4.1 Photonic crystals (PC) 

A photonic crystal (PC) is a periodic arrangement of a dielectric material that exhibits strong 

interaction with light. The development of photonic crystals is analogous to the atomic structure 

in crystals; instead of the working with Schrodinger equation here we deal with Maxwell 

equations. Therefore, if designed carefully photonic crystals can exhibit photonic band gaps i.e. 

electromagnetic waves cannot propagate in particular frequency range similar to the energy 

band gap in semiconductors where there is no available state in particular energy gap. The first 

proof of existence of photonic gap was shown in parallel by Sajeev John [161] and Eli 

Yablonovitch [70]in 1987 and in 3-d by Ho et. al. at Iowa State University in 1990 [162]. A 

schematic diagram showing the above is shown in Figure 2.26, where band gaps can form due to 

periodic arrangement of atoms and dielectric medium respectively. 

 

Figure 2.26: Schematic of electronic and photonic structures with bandgaps[163] 

Electromagnetic radiation propagating through a dielectric medium follows a simple linear 

dispersion relation i.e. ω=ck/n where n is the refractive index of the dielectric medium. Now, if 

we have a modulation of the refractive index, through which the wave has to propagate then 

the simple dispersion relationship cannot explain the complete phenomenon. The design of 

photonic crystal is based on the four macroscopic Maxwell’s equations namely 
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Where  ⃗  and  ⃗⃗  is the electric and magnetic fields respectively and  ⃗⃗  and  ⃗  are the 

displacement and magnetic induction fields and ρ is free charge density with J being the current 

density. There are some assumption made to solve the equation such as the photonic crystal is 

an isotropic medium, with no free charge so ρ=0 and therefore J=0 and ε(r,ω) =ε(r). 

And, D(r,ω)= ε(r).E(r,ω) 

The magnetic permeability is constant, So B= µ.H(r,ω) 

We can rewrite Maxwell equations for each frequency, 
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Using the above equations with c= 1/εµ, we get to 
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Now, Equation 2-3 is essentially an eigen value problem with an eigen value of (ω/c)2 and 

the operator θ 
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These equations are then solved computationally, we use scattering matrix method to solve 

these quations. Another thing to note is that equation 2-3 is scalable i.e if we scale the structure 

by a factor s, then both frequency and field profile is scaled by the same factor. This is important 

in case of photonic crystal as different wavelengths can be controlled by the feature size on the 

PC. If we scale εI(r) = ε(r/s)  then equation 2-3 becomes provided that E is frequency dependent 
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Figure 2.27: Schematic diagram of photonic crystals in 1-D, 2-D and 3-D[163] 

There are certain requirements for building a photonic crystal which have been discussed in 

brief and summarized here 

 Dimensionality: 1-D, 2-D or 3-D (shown in Figure 2.27) 

 Symmetry: Similar to atomic crystals, photonic structures are also built by translation of 

unit cell in different directions depending upon its dimensionality. The pitch defines the 

distance between each repeating structure. 

 Refractive index contrast: the basis of photonic crystal depends on the periodic 

modulation of the refractive index change. Figure 2.27 shows the changing refractive 

index for different dimensions of photonic crystal. 

 Scalability: Since the fundamental equations are free from fundamental length scales we 

can use the same result of the equations to different length scales 

2.4.4.1.1 Bragg Reflector 

The Bragg reflector is simplest form of a 1-D structure which uses the same concept as 

photonic crystal by using multiple layers of dielectric materials of different refractive index to 

cause constructive interference at each layer to maximize reflection. It has been used as a 

waveguide in optical fibers; they form an important component for laser. A 1-D photonic crystal 

is widely known as Distributed Bragg Reflector (DBR), it has been shown before that when they 

are solved they lead to formation of photonic bandgap[163]. The thickness of each layer is a 

quarter wavelength of light in that medium and sufficient refractive index contrast is needed. 
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Reflectivity can be increased by increasing the number of dielectric layers or also by increasing 

the contrast between refractive index.  

 

Figure 2.28: Photonic band structure for 1-D photonic crystal as shown in Figure 2.27 (left) 

Constant ε=13 (middle) Multilayer with ε=13 and 12 (Right) Multi-layer with ε=13 and 1 [163]. 

2.4.4.1.2 2-D Photonic slab 

These types of photonic crystals have been extensively used due for light management in 

solar cells by various groups [75, 76, 83, 136, 137, 140-143, 153, 164-168] and less complex 

fabrication method compared to 3-D photonic structures. They generally consist of a 2-D 

periodic variation of dielectric index materials with particular geometry such as a hole, cone, 

pyramid, cylinder etc. in a lattice such as triangle, square or hexagonal. In a solar cell it acts as a 

diffraction grating, in c-Si SiO2 has been used as the dielectric to provide refractive index 

modulation. In Figure 2.29 the TE and TM modes have been shown for a 2-D photonic crystal. 
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Figure 2.29: Photonic band structure for the modes of a triangular array of air columns in 

dielectric substrate (ε=13). (Blue: TM bands and Red: TE bands)[163] 

2.4.4.1.3 3-D Photonic crystal 

In theory, the 3-D crystal can be made from arrays of structure like spheres or tubes. One of  

the first photonic bandgap structures was found by Ho et. al. with a diamond lattice of spheres 

[162]. A simple thought would be putting two 2-D photonic crystals together to get a 3-D 

structure, but in practice it is not easy. There has also been less development due to the 

intricate details required for fabricating these structures making it hard for commercial 

application. In recent times 3-D structures have been realized in practice like Yablonovite which 

is made by drilling holes along three lattice vectors of FCC crystal [169], the wood pile structure 

is a stack of dielectrics arranged in orthogonal orientation [170] and invers opals which is one 

structure that has been put into application as the intermediate reflector for tandem junction 

solar cell [171]. 

2.4.4.1.4 Computational method (Scattering Matrix Method) 

There are many methods for solving the Maxwell equations as mentioned in previous 

sections. The work done in this thesis is based on the results from scattering matrix method 

which is discussed by Biswas et. al.[172]. This method is an extension from the well-known 

transfer matrix method where the structure is divided into many layers as shown in Figure 2.30 
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and the coefficient of incident, reflected and transmitted fields are calculated. A small slice can 

be depicted for the shown slab to solve by scattering matrix 

 (
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 ) 2-6 

Using this scattering matrix, and an algorithm to connect all the slices together to form a 

total matrix we can solve the problem faster. Furthermore, the dielectric material used only 

varies in x and y-direction and each slice is homogeneous in the z-direction. The Maxwell 

equation is then integrated with the correct boundary conditions to obtain scattering matrices 

for each layer in the structure.  

 

Figure 2.30: Method of slicing each slab into number of slices 

Using the condition (A = 1 – R –T) where R and T are the total reflection and total 

transmission respectively for each wavelength we can find the absorption for each wavelength 

[173] this helps to calculate the weighted absorption 
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And the current density (Jsc) can also be predicted. 
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2.4.4.1.5 Solar cell application 

PCs have been applied to solar cell light management scheme by various groups by 

extending the same concept of interference that is used for determining the requirement for an 

antireflective coating in section 2.4.1. The additional feature is to have a periodic structure 

which would lead to diffracting the light into different wave guiding modes. The design of the 

periodic structure would determine if the wave guiding mode would be effective in absorption 

or may lie in wavelength range the absorber layer does not absorb. The effective way to carry 

out this calculation is to look at the active modes in the wavelength range (>600nm). This is 

chosen because the first pass should be able to absorb wavelengths below 600nm for thin film 

silicon. The design in now an open question and many groups have tried to design different 

periodic structures for using this phenomenon.  

There have been a lot of theoretical studies for improving the efficiency of solar cells using 

the PCs with an approach similar to that mentioned above. One of the first approaches was by 

Zeng et. al. for c-Si solar cells using 1-D PC for current enhancement in c-Si solar cell and show a 

enhancement up to 135 times between 1000-1200nm [168]. Bermel et. al. compare the use of 

different dimension of PC on a 2µm thin film of c-Si where they get a 24% , 26.3% and 31.3% 

enhancement by using 1-D grating, triangular lattice photonic crystal holes of air and using both 

over a 6 bilayer DBR [166, 167]. Mallick et. al. also simulated periodic PC structures with two 

layers of holes to get an absorption enhancement close to 2.5 times [153].  

PCs have also been studied for thin film silicon solar cells recently for enhancing absorption.  

Biswas group designed a PC back reflector for a-Si:H solar cells where they compare their results 

with the classical 4n2 limit. The design considers a 2-D photonic crystal with tapered cones in a 

triangular lattice to improve the efficiency of the solar cell, [135, 139, 140, 142, 143]. The 

experimental proof of the concept of hole array has been shown by Curtin et. al. showing the 

improvement in the current density [139] and for tapered cones too which have been discussed 

later in this work. Gomard et. al. have also designed using rigorous coupled wave analysis 

method for simulation and then fabricated a-Si:H cells with 2-D PCs where they show that up to 

28% on 100nm a-Si:H [174]and 40% increase in absorption can be obtained by employing their 

suggested structure [174, 175] where they pattern the a-Si:H itself to be part of the PC. There 



www.manaraa.com

39 
 

have been efforts to use to replace the intermediate reflector using photonic crystal discussed in 

section 2.4.5.1. 

2.4.4.2 Plasmonics 

Surface plasmons are the result of electromagnetic radiation interacting with a metal 

surface resulting in oscillations of electron on the surface of a metal. In recent years this 

phenomenon has been researched for various applications such as waveguides, lasers, light 

emitting diodes and many others. We look at the possibility of it being used for enhancing light 

trapping in thin film solar cells. An important point to note here is that although we discuss 

plasmonic interaction in the periodic section it is applicable to both periodic structures and non-

periodic ones, for example annealed/hot silver discussed in section 2.4.3.1 also has plasmonic 

interaction, but these localized plasmons may be lossy in nature. 

A very good review of enhancing solar cell efficiency through plasmonic interaction is given 

by Atwater et. al.[85] where they explain the three methods how plasmonic interaction can be 

used favorably in a thin film solar cell for light trapping. Figure 2.31 shows three different ways 

that plasmonic effect can be favorable used starting with the particles on top where light can 

get scattered at different angles to increase the path length in the absorber layer[176, 177] as 

shown in Figure 2.31(a). In addition there have been reports that there would be strong 

constructive interference between scattered and transmitted light above surface plasmon 

resonance wavelength but also destructive below the plasmon resonance wavelength [178]. 

There has to be a balance here for the size and coverage of particles to avoid destructive 

interference causing reflection. The next method is to incorporate nanoparticles in the absorber 

to get localized plasmonic enhancement by increasing the optical absorption especially close to 

the metal surface plasmons which create increase light intensity and therefore an increase in 

optical absorption as shown in Figure 2.31(b), while this method would lead to localized plasma 

it is more difficult in processing without avoiding defects due to metal incorporation. Figure 

2.31(c) shows use of metal structure at the back where if periodic structures exist there can be 

photonic wave guiding modes or even surface plasmon polariton (SPP) modes can be formed 

which would propagate parallel to the surface of the metal and there would be a decaying field 

into the semiconductor [83, 90, 134, 179]. 
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Figure 2.31: (a) Light trapping by nanoparticles from metal nanoparticles on the top 

surface of the solar cell (b) Light absorption enhancement in the semiconductor by embedded 

nanoparticles (c) Light trapping by coupling to guided modes of the solar cell from nano 

patterned metallic back contacts [85] 

There has been a lot of work to analyze the effect of plasmonic interaction in solar cells not 

only in thin film solar cells[177, 180-184], but also in organic based solar cells, dye sensitized 

solar cells[185-190], and also crystalline solar cells[191]. In the above section the methods of 

how light trapping could work in a solar cell was discussed, in addition there are more factors 

that play a role in effective plasmonic light trapping. The shape and size of the particle from 

which light scatters is also very important; Chen et. al. show that particles of 200nm give them 

the best enhancement in Jsc in comparison to smaller particles[125] which has also been 

confirmed from other groups[134, 179, 192] that larger particles are more effective for 

scattering light in wider distribution angles which enhances broadband absorption. While there 

is also an effective size as larger particles do not have the same enhancements which may be 

due to multiple excitation modes with smaller scattering properties. The effect of shape of the 

particle is also important which is shown in Figure 2.32 showing the fraction of light scattered 

into the substrate for different Ag particles on a 10 nm thick SiO2 on Si showing performance of 

different geometry for plasmonic enhancement. The choice of metal is predominantly silver due 

to low absorption loss. 
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Figure 2.32: Effect of shape for light scattering into substrates[84] 

These plasmonic structures however are better used with a dielectric layer as the plasmonic 

resonance of Ag is ~350nm in air which can be shifted towards the red/infra-red in material 

whose dielectric constant is higher than air as shown in Figure 2.33. There is a strong field 

enhancement around the metal which could lead to increased absorption in the semiconductor 

close by and it is more effective in small metal particles (<20nm). Unfortunately using this 

method in thin film silicon solar cells leads to many defects and hence high recombination so 

has not resulted in much use. This method has gained some importance in organic and dye 

sensitized solar cells. 

 

Figure 2.33: Extinction (solid lines) and scattering (dashed lines) cross-sections for 100-nm 

diameter Ag spheres embedded in air (black), Si3N4 (n=2, blue) and Si (red), normalized by the 

projected area of the sphere. [192] 
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Surface plasmon polaritons (SPP) can be formed when the metal is used as the bottom of 

the cell where the wave propagates parallel to the surface. SPPs can efficiently trap and then 

guide light into the absorber layer. This is possible when we use a periodic structure as shown in 

Figure 2.31(c) and then the geometrical shaped metal layer can be used to couple the incident 

light to propagate plasmonic modes or photonic wave guiding modes. The geometry of the 

structure plays an important role to provide good coupling in the metal-dielectric interface 

where the dielectric plays a role to keep the metal in indirect contact with the semiconductor 

such that there is no defect formation due to direct contact of metal-semiconductor. The 

dielectric also has higher dielectric constant makes more modes available to couple for 

enhancing light trapping. Both photonic and plasmonic modes are available while the photonic 

enhancement may be greater due to lower losses as shown by Figure 2.34 where the silver ridge 

is 50nm and the silicon thickness is 200nm [134]. 

 

Figure 2.34: Incoupling cross-section for SPP and photonic modes for a 200nm thick Si with 

50nm Ag ridges[134] 

There is considerable research in this area trying to understand the phenomenon and trying 

to predict the enhancement by trying different structures (shape, size and geometry) both 

computationally and experimentally 
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2.4.4.2.1 Solar Cell Application 

There has been a lot of research into this area and the theoretical aspects discussed above 

have been applied to improve cell efficiency and mostly all efforts have been to increase the 

current density in solar cells. We are discussing few of these developments around the work in 

thin film silicon solar cells, whereas plasmonic effects are widely used for organic solar cells as 

well.  

Ferry et. al. used plasmonics to improve the efficiency of thin a-Si:H solar cells. They define 

the theory based on simulations where they suggest that higher absorption can be achieved by 

coupling the SPPs to photonic modes [128, 134]. They also perform simulation to predict 

structures (geometries) as well as dimensions (pitch and packing fraction) effects on the 

absorption [130, 131]. They also show current enhancement due to a hole array compared to 

flat substrates, and fabricate cells on a substrate with many different structures( varying pitch 

and diameter) as shown in Figure 2.35 which allowed an effective comparison between various 

structures [38, 132, 133].  

 

Figure 2.35: SEM images of square periodic arrays with varying pitch and diameter [132] 

Haug et. al. analyze the modes that are available for effective absorption in periodic 

structures and then compare it to randomly textured substrates produced by LPCVD of ZnO. 

They also show that having the ZnO layer between the a-Si:H layer and silver may decrease the 

effects from plasmonic enhancement [182]. In a latter paper [181] they discuss that the ZnO 

layer is effective in converting SPP modes into regular wave guided mode which helps in 
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increasing the absorption and decreases the parasitic absorption by the metal as predicted by 

Springer et. al. [117] 

Biswas group simulate structures which combine both photonic and plasmonic structures 

and they predict that it can lead to enhancement over the 4n2 limit also [75, 83, 90, 136, 193]. 

These devices and their experimental results have been discussed later in the thesis. 

2.4.4.3 Other Niche Approaches 

The research in the area of light trapping has taken inspiration from many areas and we 

mention a few of these approaches in this section. 

The growth of nanowires have been useful for making many new type of devices and can 

also be useful in light trapping or coming up with novel structures for growing solar cell itself 

[37, 80, 194-200]. A method of fabricating and even measuring solar cell characteristics of a 

single nanowire has been shown by Kelzenberg et. al. where they fabricate nanowires (radial p-n 

junction) and show methods for measuring fundamental properties of the nanowire useful for 

photovoltaic application. They also suggest that a 5% packing fraction would be enough to get 

similar absorption as the Lambertian limit [198, 201, 202] In addition, nano wires can lead to 

very good light trapping as these structures can mimic photonic structures grown vertically and 

have very high enhancement in the light path length [80, 197]. Naughton et. al. also showed 

nano-coax cells made by etching c-Si where they could get an efficiency of 8.4% with a 90nm i-

layer[199] and Kuang et. al. showed that they could get 3.4% efficiency from 25nm thick i-layer 

on a substrate which had nano rods formed by growing ZnO rods in an aqueous solution after it 

was nucleated by sputter deposition [37]. Vanecek et. al. came up with a 3-D structure inspired 

from Swiss cheese (Figure 2.36(e)) which is fabricated by UV-lithography and reactive ion 

etching and this structure results in giving a cell efficiency of 10.3% for a micromorph tandem 

cell [200]. Another interesting approach is the formation of black Silicon which is needle shaped 

structures of silicon having very high absorption up to 98% and very low reflectivity. They 

provide excellent material for absorption; they have been based on two structures namely the 

random nano porous structures [203] or periodic structures inspired by a moth-eye [204]. 
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Figure 2.36: ZnO nanorod/a-Si:H cell (a) Schematic with SEM images from (b) top and (c) 

cross-section [37] and SEM images of (d) ZnO nano columns and (e) Swiss cheese design [200] 

In the superstrate configuration, glass remains the primary substrate and as light comes in it 

can be scattered in various directions as discussed for ZnO case in section 2.4.3.2. But, if we 

could texture the glass itself then a flat TCO can be deposited onto it or even multiple texturing 

can be applied in the same theme as show in Figure 2.18. A widely used standard for comparing 

light trapping structures formed by the Asahi Glass company which is commonly known as Asahi 

glass, produced commercially for solar application.  

There have been other research groups also pursuing this effort [205, 206]. In Figure 2.37 

we show the fabrication procedure of textured glass by using polystyrene nano spheres on glass 

and then etching it using reactive ion etching to form structures of different aspect ratios 
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Figure 2.37: (Top) Fabrication process of textured glass (bottom) Various fabricated 

structures of different aspect ratios 

2.4.5 New developments 

2.4.5.1 Intermediate reflectors (IR) 

In recent years there has been research to develop intermediate reflector at the junction 

layer in a micromorph tandem cell which can help in reducing any type of optical losses i.e. light 

can be reflected back to top cell and transmitted to bottom cell efficiently without hampering 

carrier collection between nc-Si:H and a-Si:H i.e. high conductivity in the direction of current 

flow with minimal loss of voltage due to recombination [21, 22, 207-216].  There have been 

many approaches for studying this starting with the incorporation of silicon oxide layer [21, 22, 

215] or silicon nitride and Zinc oxide layer[23, 207, 212-214] which can be textured in various 

ways to adding metal nano particles for plasmonic light trapping[216].  

Silicon oxide is essentially an insulator, that can be modified by addition of dopants like 

phosphine and diborane during growth to modify not only the bandgap but also to make it 

conductive enough for use as an intermediate reflector. The main idea is to replace the junction 

(n+) with n-type doped SiOx layer. As the bandgap of SiOx is higher it would not absorb the 

longer wavelengths and if designed properly it can also help in providing scattering effect to 

enhance light absorption in the top cell as shown in Figure 2.38(c). It has been shown by various 
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groups that it can lead to better current densities for both top and bottom cell with use of 

intermediate reflectors.  

 

Figure 2.38: Schematic diagram of micromorph cell with (a) no IR (b) flat IR (c) IR for light 

trapping[21] 

ZnO is widely used as an Anti-Reflective Coating (ARC) for solar cells and it can also be 

incorporated as an IR in the cells since it can be grown through CVD methods as well as 

sputtering depending on the desired requirement. The use of ZnO provides additional current in 

both top and bottom cells. It can also be optimized to produce various structures according to 

requirement including random orientation [213] and periodic arrangement including 3-D 

photonic crystal [171, 207, 217]. It has been shown that ZnO is a little more problematic to deal 

with than SiOx, as it leads to shunting and lower yield [213]. Another method that can be 

employed and was talked about in the Plasmonics section is the inclusion of metal nano 

particles as an intermediate reflector. 
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2.4.5.2 Doped Silicon Oxide 

In the past few years the use of doped silicon oxide has been on the rise. The interest has 

widely risen due to the development of the ability to get conductive silicon oxide and it 

multifaceted usability; some have been listed below 

 It can be grown by PECVD methods in the same chamber which allows for similar 

processing techniques used for other layers in the micromorph cell making it more 

compatible[20]. 

 There has been research into replacing ZnO layer with SiOx to make process ability 

easier as SiOx is more compatible with growth of the next silicon layers when compared 

to ZnO [20, 218]. 

 Higher bandgap implies it does not absorb in the same region as the micromorph cells 

[21, 215, 218]. 

 Ability to dope it with phosphine makes it conductive, although it does have an effect on 

the bandgap and refractive index which are higher than silicon bandgap. This property 

allows it to replace the conducting n+ layer. Previously n+ layers absorbed photons that 

were lost due to recombination, therefore decreasing recombination losses with SiOx 

(See Figure 2.39) [20, 218]. 

 It can also be doped p-type by changing the dopant during processing to boron to be 

used as the wide bandgap window layer[19]. 

 It can be used as an Intermediate reflectors (IR)[21, 215]. 

Most groups use a mixture of Silane and carbon dioxide in a PECVD reactor to grow SiOx 

where they can be doped either n-type or p-type with the use of phosphine or diborane. The 

change in the material properties can be controlled by various deposition parameters such as 

CO2/SiH4 ratios the discharge power, substrate temperature and the doping amount. Figure 2.40 

shows the change in refractive index and conductivity with changing different process 

parameters 
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Figure 2.39: QE curves of two a-Si:H/a-SiGe:H/nc-Si:H triple junction solar cells: baseline 

cell (solid lines) without nc-SiOx:H and (dashed lines) improved cell with an n-type nc-SiOx:H 

[20]. 

 

Figure 2.40: Properties (a),(b) Refractive index (c),(d) conductivity of SiOx layer with (a),(d) 

Carbon dioxide flow (b) discharge power (c) phosphine flow during deposition[218] 
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2.5 Cost reduction methods 

It is imperative that for thin film solar cells to keep production costs as low as possible for 

competing with other solar cell technologies. In the previous sections we discussed how this can 

be done by Light Management which in turn would increase the efficiency. The cost of 

fabricating the solar cell plays a very important role; as thin films major selling point is the low 

cost and many factors play a role in the total cost of the cell and each of them have to be taken 

account of keeping in mind the cost to benefit. 

In commercial application, time plays a very important role and a high throughput process is 

very important. The advantage that the thin film process carries is that it employs easy 

processing techniques which have been transferred for roll to roll processing. Most groups in 

research scale use processes which have a growth rate 1-5Å/s for a-Si:H deposition and 5-10Å/s 

for nc-Si:H deposition. But these processes need to be ramped up to industry scale and 

therefore also growth rate has to be increased to advance faster growth. There has been work 

by various groups to increase deposition rates for both a-Si:H and nc-Si:H to higher growth rates, 

while producing good quality material . 

The use of flexible substrates in solar cell application opens up many applications. The 

growth processes used for thin film silicon solar cell can use temperatures from 150⁰C - 500⁰C 

and if we can keep the processing to low temperatures; i.e. we maintain a low thermal budget 

then we can gain in total production costs as high temperature maintenance require more 

energy and hence higher costs. This becomes more important when we want to do a roll to roll 

process; a low thermal budget can also lead to less maintenance on the line and hence low 

down time costs which again can lead to higher throughput.  
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Figure 2.41: Solar cell configuration (a) Substrate and (b) Superstrate 

The most common substrate used in the solar cell application is glass which is used for 

superstrate type configuration (Figure 2.41(a)). The general method is to first deposit the higher 

bandgap material (a-Si:H) as the light would get in from the glass side and then the lower 

bandgap material (nc-Si:H) deposited as the bottom cell. But, it has been observed that growth 

of nc-Si:H requires higher temperature since it involves nucleation of crystalline phase (see 

section 2.2) and therefore for commercial purpose it is easier to work with a substrate type 

configuration.  There has been also thrust to move away from glass towards using flexible 

substrates for which opens a new arena to explore new applications [91, 92, 137, 219-230]. 

Flexible substrates mostly consists of film deposition on thin stainless steel[219] or plastic 

substrates such as polyimide, PEN and many more [137, 223, 225, 227, 229-231]. This thesis 

deals with the use of flexible substrates and further details are provided in later sections. 
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3. Materials and Methods 

3.1 Deposition methods 

The deposition methods used in this work have been dependent on the devices fabricated. 

We show a schematic diagram of a standard device used in the thesis in Figure 3.1. We will 

describe the fabrication method for each of the layers and the standard properties required for 

a good layer. We start with the active layers of the device which the silicon based layers which 

have been fabricated with plasma enhanced chemical vapor deposition (PECVD). We have also 

used evaporation to deposit metallic layers for back reflectors as well as for better contacts. 

Finally a brief description of the sputtering technique which is used for depositing the 

transparent conducting oxides (TCO) namely indium tin oxide (ITO) used in this work zinc oxide 

(ZnO) can serve as a good TCO, but we have mainly used for light trapping related purpose. 

 

Figure 3.1: Schematic diagram of a micromorph device used in this work 

3.1.1 Plasma enhanced Chemical Vapor Deposition (PECVD) 

Thin film silicon solar cells predominantly use PECVD systems for the device fabrication 

[232]. In a typical CVD process the precursors are broken down and then can react in the 

chamber to finally yield a deposited film. We use two different PECVD reactors for deposition 

purposes namely Reactor 1 (R1) and Reactor 2 (R2). R1 is primarily used to deposit the intrinsic 

nc-Si:H layer to avoid contamination from dopant gases, whereas all the doping layers are done 

in R2. We also deposit a-Si:H intrinsic layers in R2. While R2 is being used for the doped layers 
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we take extreme care to purge our the dopants from the chamber before depositing the 

intrinsic a-Si:H layer. Since our deposition involves toxic gases, special care has been taken to 

set-up toxic gas detectors and also feedback controls to avoid any accidents. We also have 

controlled exhaust system and also perform regular monitoring of all the gas cylinders. 

A schematic diagram of the PECVD reactor (R1) is shown in Figure 3.2 which consists of the 

main reactor chamber which is being fed by the controlled flow of different precursor gases 

through calibrated mass flow controllers. The reactor chamber pressure is maintained through a 

set of turbo-molecular and mechanical pumps. The gases are then ionized in the chamber by a 

capacitively coupled RF plasma source which is generated by 8116A HP function generator to a 

RF power amplifier. The output from the amplifier is coupled to a bird wattmeter through which 

it is provided to the chamber through an electrode. We use a L-shaped tuner consisting of an 

inductor and set of capacitors to ensure maximum power transfer into the system. Impedance 

matching is done manually to ensure highest net power transfer (forward –reflected power) into 

the system. Plasma is initiated by creating a high electric field across the electrode with the 

substrate/chamber grounded, the precursor gases are ionized and then stable plasma can be 

maintained at lower electric field. 
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Figure 3.2: Schematic diagram for our in-house PECVD chamber [61] 

The deposition occurs everywhere i.e. the cold walls and the substrates. A shutter is in place 

very close to the substrate so that no deposition takes place until the plasma is stabilized and 

film growth is controlled. Due to the deposition on the walls and regular buildup of film on the 

electrode, regular cleaning is done for maintenance of the reactors. After every cleaning process 

the reactors are then qualified again for proper film growth before making devices on them 

again. For consistency, we maintain a detailed log of device processing methods with various 

input/output parameters that are supplied/measured on the reactor during the growth of the 

film. We also maintained a clean room free from dust as they lead to unwanted problems in 

devices such as shunting or poor performance. 

The growth of films is a complex process and involves many variables; we will talk about 

procedure followed for depositing a film (more relevant to R2 with both dopant and intrinsic 
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deposition. R1 conditions are similar with slight modifications mentioned below and also some 

of the procedures used are different. 

1. History of the chamber: here we are talking about what type of depositions was 

previously done in the chamber that could also affect your layer since the chamber may 

have some contaminant which could stick around. To avoid this we try to do oxygen 

plasma clean of the chamber to avoid cross contamination. This is especially important 

when deposition has to be done after deposition of another dopant type. 

2. Substrate Loading: Substrates were loaded on a solid stainless steel (SS) block which was 

inserted with a thermocouple to get a better temperature reading and a heater coil to 

deposit films at desired temperature. Substrates were clamped manually with a set of 

holders and screws with holes able to sustain higher temperature; special care was 

taken when glass or plastic substrates were used to avoid breaking or sticking of 

substrate on holder respectively. The whole substrate holder was then loaded into the 

reactor and essential electrical and mechanical parts fitted properly. 

3. Reactor Chamber conditioning: The chamber was not a load lock system, therefore more 

care had to be taken to purge out all the atmospheric gases that may have gone in 

during the short time of transfer of the substrate holder; when idle the reactor chamber 

was maintained in vacuum with a blank plate on top. Appropriate purges were done 

using clean nitrogen gas to remove the remaining contaminants in the chamber 

following which the gas lines were cleaned by purging the intrinsic and dopant lines 

which are separate flow tubes to the chamber to avoid cross contamination (intrinsic 

layer). The plasma is then ignited and stabilized and we coated the walls with fresh film 

to avoid any old contaminant from the wall; this time is also used to heat the substrate 

to appropriate temperature. 

a. Substrate Temperature: The substrate temperature determines the quality of 

film growing on it. In case of a-Si:H lower temperatures lead to void formation 

during growth which leads to cracking and shunted devices, that can be 

mitigated a little by using higher hydrogen dilution but we still get poor quality 

films at room temperature. For nc-Si:H temperature plays a bigger role as 

crystallinity is effected to a great extent by the growth temperature. It has been 

shown by various groups that as temperature increases so does crystallinity[64]. 
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There have also been reports that the grain size also increases when we 

increase the growth temperature and the ratio of <220>/<111> orientation of 

grain also increase which is favorable for transport [61, 64]. Additionally, we 

also mention for the ease of writing all temperatures mentioned are the set 

temperatures, whereas the actual temperature on the substrate may be a little 

lower (SS may be close but plastic substrates may be at ~20⁰C than set 

temperature). 

4. Film growth: The shutter was closed during all the above processes and after the 

condition for growth is set the shutter is opened for film growth which has been 

calibrated previously. The parameters that have to be set here are 

a. Flow rate of different precursor gases: The ratio of gases determine the film 

properties along with other factors listed here. For example for an n+ layer the 

PH3/SiH4 ratio is the main variable to change the conductivity of the film in R2. 

An important example for R1 is the dilution ratio or H2/SiH4 ratio which 

determines the crystallinity of the growing nc-Si:H film as discussed in last 

chapter. 

b. Input power: Power determines not only the growth rate, but also affects the 

crystallinity of the growing film especially while growing nc-Si:H films. The idea 

is to grow the films at a higher growth rate to get higher throughput, but it has 

to be done in a controlled manner such that the film quality does not suffer due 

to high ion energy density. Therefore one of the methods used is to use high 

power with high chamber pressure so that ion energy density is lower. We use a 

power between 5-8 watts for growth of a-Si:H and nc-Si:H is grown at 30-40 

watts depending on other conditions used during growth. 

c. Chamber Pressure: The chamber pressure determines the amount of gas 

present in the chamber at the time of deposition and in our case most of our 

deposition is done between 50-500mTorr, while etching is done at low chamber 

pressure (5-20mTorr) so as to maintain high ion energy and minimize the 

collisions have to be minimized. The deposition is preferred to be done at higher 

chamber pressure as that means there would be more collisions of ions and 

hence the ion energy would decrease before it reaches the substrate leading to 

lower damage on the films. It has also been shown that higher chamber 
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pressure may lead to higher deposition rates due to higher ion flux next to the 

substrate. 

d. Plasma source: As discussed above we have RF plasma source which is 

capacitively coupled to the chamber. We deposit at frequency range of 44-

48MHz, which is higher than the standard method of using 13.56MHz. There are 

various advantages of using VHF-PECVD which is discussed in more detail in 

section 3.1.1.1. 

e. Growth conditions: All the films grown are previously grown and measured 

during calibration runs. The growth rate is determined by growing thick films 

and then interpolating or extrapolating for desired thickness. During change 

from the doped layer to the intrinsic layer we take care to purge the chamber 

properly and since oxygen plasma cannot be used we also etch the walls with 

hydrogen to clean any dopant remaining on the walls along with purging lines 

and chamber. In case of nc-Si:H we transferred sample from R2 to R1 after 

cooling it down to decrease reactivity from exposure during transfer and also 

minimum time is maintained during transfer. 

f. Completion: The device is cooled to temperature below 150⁰C before removing 

from the chamber. We also take care during cooling from higher temperature 

>250⁰C to make sure that we cool it in chamber which has high hydrogen 

content to prevent effusion from the films. The film/device is removed marked 

then taken for the next step or measurements. 

3.1.1.1 Advantages of VHF-PECVD 

The use of higher frequencies is basically to increase the growth rate while not having 

deteriorating growing film (Figure 3.3(a)). While different groups have different ranges for  the 

maximum deposition rate the trend towards higher growth rate with increasing frequency is 

noticeable. It can also be seen that different power densities also increase in the frequency , 

leads to increasing the growth rate as shown in Figure 3.3(b). Let us look at the effect more 

closely starting with the plasma conditions. In each cycle the electrons can easily move 

compared to the ions basically due to their mass and can get collected easily so it leads to a 

small depletion of electrons leading to an increased potential difference between the glow 

discharge and electrons. In time however with multiple cycles the positive ions do reach the 
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other end. Now if we decrease the sheath thickness as shown in Figure 3.4(b) then it would be 

favorable as the ion bombardment would be much lower and also the power is coupled better 

[233]. It should be mentioned that ultra-high frequency may not be also good as it would not 

affect heavy ions which would then be immobile. 

 

Figure 3.3: (a) Deposition rate versus frequency data for various groups [233, 234]  (b) 

Deposition rate versus frequency for various power densities [235] 

It has also been seen that when the frequency is increased the ion energy of the ions 

impinging on the surface decreases and this has been attributed to both the bulk plasma and 

reduced plasma sheath potential [236]. There have been reports suggesting that there is an 

enhanced ion flux on the growth surface at higher frequencies, which lead to high surface 

reactivity of the film precursor. Therefore, the higher frequency has higher ion flux at lower 

bombardment energy making it favorable for growth of silicon films especially nc-Si:H [236]. 

 

Figure 3.4: (a) Energy distribution of ions impinging on surface from H2/SiH4 plasma and 

(b) Measured sheath capacitance and correspondingly calculated sheath distance [233, 236] 
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3.1.1.2 Design of cells 

In this section we mention the basic features of the standard cells we fabricate, the 

conditions change with different substrates 

3.1.1.2.1 Amorphous silicon 

a-Si:H layers are grown on SS substrate first have a n+ layer which is doped heavily using 

phosphine (5% PH3 tank)mostly fabricated at temperature above 250⁰C. The reactor is then 

purged and then conditioned before deposition of the intrinsic layer which is fabricated with 

dilution ratio between 7-10:1 depending on the temperature of deposition, lower temperature 

layers are grown with higher dilution ratio. The intrinsic layer is also doped with incremental 

amount of doping as the film gets doped un-intentionally by oxygen in the chamber; the 

strategy used here is that we give the push to holes which have travel a longer distance by 

doping with increasing amounts of boron with the help of trimethyl boron (TMB). This boron 

content is increased towards the middle part of the device and then kept constant as the 

carriers may have had gained enough kinetic energy to reach the p+ where they would be 

conducted away. 

 Before the p+ we have a window layer of wider bandgap layer by doping with methane to 

add carbon in the layer while making conducting with help of a little phosphine. This window 

layer has a dual function as it blocks the boron from p+ to diffuse into the intrinsic layer while it 

also helps in increasing the open circuit voltage. The window layer has to be kept in check as it 

adds to the series resistance if too thick or heavily doped with carbon. Another method of 

decreasing series resistance is to start grading with ppm amounts of phosphine before starting 

to grade with TMB at the start of the intrinsic layer. The p+ is designed such that the first layer 

provides a step from the wide bandgap window layer and then we have a very thin 15-18nm 

layer microcrystalline p+ followed up by amorphous p+. The p+ thickness was limited to 20nm 

such that it did not absorb much as photons absorbed in the layer would be lost to 

recombination. 

3.1.1.2.2 Nano crystalline silicon 

We use two methods to grow nc-Si:H cells and will discuss both methods here. Hydrogen 

profile cells are grown on amorphous n+ by first starting with an incubation layer of a-Si:H which 

is used to nucleate nc-Si:H crystallites. The seed layer played an important role in determining 
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the Voc of the cell as dilution ratio decreased so did the Voc if other condition were kept 

constant.  We started with a high dilution ratio >20 to start the nucleation process once 

nucleated the dilution ratio was gradually reduced as the deposition continued mostly ending up 

below 15. The dilution ratio was continuously decreased and faster if a higher dilution ratio was 

used to start with, another factor kept in mind was the temperature and power as with higher 

temperature lower dilution ratio can be used and the same is true for power. Although changing 

temperature has a more pronounced effect. 

The intrinsic layer also needs to be doped similarly to counteract the unintentionally doped 

oxygen by using TMB, but at a much lower level than in case of a-Si:H. Here also we can start 

with phosphine and gradually move to boron grading which helps in decreasing series 

resistance. But the doping has to be kept to minimum to keep recombination down. 

After the nc-Si: layer was fabricated an amorphous cap layer was deposited to protect the 

nc-Si: layer and moreover to passivate the intrinsic layer which had to be transferred to R2 for 

the deposition of p+. The cap layer thickness was ~5nm, whereas we have seen that if thicker 

amorphous layer acts as a barrier which may lead to drop in FF. We again use a three layer 

process to deposit p+ starting with an amorphous layer followed by highly conducting nano 

crystalline p+ and then finally an amorphous p+ layer. 

The other method of depositing nc-Si: layers is the super lattice method of depositing 

alternating layers of a-Si:H and nc-S:H layers. Here the dilution ratio can be kept constant for the 

whole layer the determining factors here are the times for each layer which is generally kept 

10/1 i.e. for nc-Si:H/a-Si:H growth thickness in nanometers. The dilution can be changes 

according to the temperature of deposition. The other steps are similar as it required an 

incubation seed layer and doping for better carrier collection against un-intentional oxygen 

doping and finally we always end with an amorphous layer which works as passivating cap layer. 

The p+ remains same as in hydrogen profile cells. 

3.1.2 Thermal Evaporation 

Thermal Evaporation is a widely used technique by the thin film industry to deposit good 

quality material. The basic idea is to create a vacuum where the mean free path of the particle is 

high enough that when they are sublimate using a source they can deposit at the colder surface 
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in front moving from a source towards the substrate. We use a thermal heat source in an in-

house built thermal evaporator as shown in Figure 3.5. For thickness measurement and growth 

we use a quartz crystal whose vibration frequency is known and the changes are recorded using 

a digital thickness monitor calibrated for each type of metal. We have assumed tooling 

factor=100% due to large distance between source, substrate and the quartz crystal. All 

depositions were done with substrate at room temperature. 

 

Figure 3.5: Schematic Diagram for Thermal Evaporation 

The substrates are loaded facing down and the source material is loaded on a molybdenum 

boat for silver or aluminum and for chromium evaporation commercially available chromium 

source rods are used. After loading the substrate the system is pumped down using a set of 

mechanical pumps and turbo molecular pumps. The evaporation is done at pressures below 

2x10-6mTorr to avoid any oxidation. The evaporation rates were kept constant 5-7Å/s for Ag, 20-

25Å/s for Al and 1-1.5Å/s for Cr. Before actual deposition took place on the substrate care was 

taken to qualify the rate of deposition by depositing on the shutter first. The substrates were 

allowed to cool down before they can be removed for vacuum. Chromium was added on the 

substrates for back reflector as an adhesion layer for silver which is used as the back reflector. 
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The use of aluminum is mainly as the bus bars on top of the device for improving current 

collection and decreasing series resistance. 

3.1.3 Sputtering  

Sputtering is a faster deposition process than evaporation, although widely used for metal 

deposition on the semiconductor industry we use it mainly to deposit two types of Transparent 

conducting oxides (TCOs) namely Zinc oxide (ZnO) and Indium tin oxide (ITO). The basic idea of 

sputtering revolves around using excited argon ions to bombard the targets of the TCOs which 

would bombard the target to release ions from the target to get deposited on the substrate 

loaded. Even though DC plasma is a possibility here as the films are conducting, we mostly used 

RF plasma as it gave better quality films at higher growth rate. We used an in-house built sputter 

system for the depositions and have capability to both DC and RF sputtering. A schematic 

diagram of the system used is shown in Figure 3.6. 

 

Figure 3.6: Schematic diagram for in-house Sputtering system [64] 

A very important part of the solar cell is the TCO and we will discuss the TCO’s used in this 

thesis below; 

a) Indium Tin Oxide (ITO): ITO is widely used as a TCO by the solar industry although 

recent trends have been to move towards cheaper material as in ZnO due to the 
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increasing costs and the lack of Indium in the world reserves. It has also been 

affected by the heavy use of ITO by the display technologies. We deposit ITO at 

higher temperatures ranging from 200⁰C-300⁰C depending on the substrate 

capabilities. Our ITO has a sheet resistivity of 2 x 10-4 ohm-cm. The ITO deposition is 

calibrated regularly by using a microscopic glass to deposit thick films through which 

growth rate is calculated and resistivity measurements are made by four point 

probe. The transmission properties suggest that we have more than 80% 

transmission (Figure 3.7) in the absorption range of the solar cell. In most cases we 

use a 70nm layer of ITO which is the calculated quarter wavelength anti-reflection 

coating. 

b) Zinc Oxide: ZnO is a wide band semiconductor which can be doped to make it 

conducting. The widely used dopant is Al while other dopants have also been tried 

such as Gallium, boron, indium etc. We use aluminum doped ZnO in particular our 

target is doped with 2 atomic % Al. Although ZnO can also be used as a front contact 

TCO, for this thesis we have used ITO as our front contact anti-reflection coating, 

while ZnO:Al is used for the back reflection in substrates prepared for light 

management, it is a common material for most of the light management schemes as 

it is used as the spacer separating the metal layer of the back reflector and the 

semiconductor mainly done to decrease recombination due to metal-

semiconductors, it also helps in coupling light into the semiconductor having a 

refractive index of ~1.9-2.1. An additional use is the back reflector namely etched 

ZnO discussed in last chapter and in further chapters. The sheet resistivity of ZnO:Al 

film is ~5 x 10-4 ohm-cm and the transmission is shown in Figure 3.7 
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Figure 3.7: Transmission of ITO and ZnO:Al 

3.2 Substrate Preparation Methodology 

We have used a variety of substrates in this thesis as it includes deposition on plastic 

substrates. The substrates used are given below 

 Glass 

 Stainless steel (SS) 

 Poly ethyl naphthalate (PEN) 

 Polyimide (Kapton) 

 Polymer on stainless steel (POS) 

Each of these substrates varied in characteristics and their main change was due to the 

change in fabrication process due to the additional boundary of process temperature limitation 

for each substrate. A more descriptive method of the choice of substrate is given in the later 

chapters. While here we would go through the procedure of preparation of each substrate. 

3.2.1 Glass 

We used standard microscopic glass or corning 7059 glass when required for deposition of 

films for different film measurements. It could also be used in case we needed to make 

superstrate type solar cells where light comes in through the glass in which case we used SnO2 

or ZnO:Al coated glass. A standard procedure was used for cleaning where we boil the glass 
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substrates of 2”x2” size in acetone and further clean by ultra-sonication in methanol, after this 

the glass was stored in fresh methanol until used. 

3.2.2 Stainless steel (SS) 

SS was used for all calibration devices and in general to qualify all devices before they can be 

fabricated on plastics or otherwise any special structure. In addition it also formed the base 

substrate for randomly textured substrates as in annealed silver and etched ZnO in our case. The 

SS we used flexible as it was 5 mils thick and pre-polished on one side which came from United 

solar group. The cleaning consisted of similar methods with an additional step of boiling in 

mixture of ammonium hydroxide, hydrogen peroxide and deionized water before the ultra-

sonication step and then storing in methanol until used. 

3.2.3 Poly ethyl naphthalate (PEN) 

We collaborated with Light wave power for substrates and their nano imprinting of 

structures on this substrate. Although PEN has a known process able temperature up to 200⁰C, 

we found that at those temperatures it would not be possible to fabricate them on PEN itself 

when an imprinted structure is on it. The PEN substrate was therefore qualified before 

fabrication at each time by annealing it in an oven set at 200⁰C to check if there is considerable 

bending or formation of cracks or other defects. Due to the presence of the chemical surfactant 

allowing higher processing temperature care was taken to bow of any particles that may have 

been lodged on it by blowing nitrogen at high pressure and then heating in an oven for 

qualification. This was followed up with thermal evaporation of Cr/Ag at room temperature as 

the back reflector and then sputtering ZnO:Al at 150⁰C. 

3.2.4 Polyimide (Kapton) 

Kapton is also a plastic substrate which can handle higher temperatures and was prepared 

in a method very similar to PEN substrates with a variation in the qualification process where 

the oven temperature was set to 250⁰C, basically saying that the qualification consisted of the 

annealing at the highest processing temperature that the substrate would undergo during the 

complete fabrication process. 
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3.2.5 Polymer on stainless steel (POS) 

POS is used to fabricate devices at higher temperature by giving the plastic a backing 

structure for mechanical support. It could withstand higher processing temperatures and this 

was useful especially for fabricating nc-Si:H. The method of substrate preparation was kept 

similar to that used for plastic substrates discussed before. 

3.2.6 Scanning Electron Microscope (SEM) 

A very important part of the substrate preparation method consisted of looking at what the 

fabricated structure looks like and how they behave even after they have been annealed and if 

there are structural changes that are deteriorating to the devices. A SEM is a widely technique 

for looking at the topographical image which is our main use, but today is used for a wide 

variety of applications. A simple explanation for the process is that electrons are generated from 

a gun which is focused on the sample and these electron interact with the sample and after their 

interaction they are collected by different detectors collecting back scattered electrons (used in 

our case), secondary electron, x-ray detector and many more depending on the required use. 

We used a Raith system capable of e-beam lithography to look at our structures at various 

stages of the fabrication not only during substrate preparation but also after the device 

fabrication. 

3.2.7 Atomic Force Microscopy (AFM) 

We have used AFM to measure 3-D topography especially important for light trapping 

structures as a height plays an important role. We used an AFM system supplied from Veeco 

Instruments. The AFM is a very sensitive system unlike SEM it can give us idea in the z- direction 

also. It works on the principle that a small cantilever with a very sharp tip on 2-5nm when very 

close to the surface of the film feels forces acting on it and if we can follow this path we can 

measure features on it. It houses a piezoelectric base on which the sample is loaded and the 

cantilever scans on it. There is a laser which is pointed to the head of the cantilever with a photo 

detector detecting each movement of the cantilever as a feedback control processing how much 

the cantilever needs to move in the z-direction. The complete image is formed by making 

multiple line scans which are completed by moving automatically to predefined size of the 

sample. This method is tedious and a little slow also the size of sample to be scanned is a 

maximum of 32µm x32µm.  
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The cantilever can be either in contact mode or non-contact mode, for all our 

measurements we were using taping mode since we had structural changes which had large 

continuously changing height through the surface.  

3.3 Characterization Techniques 

There is a variety of characterization methods that were used during the development of 

the work carried out in this thesis. It is very important to measure the amount of change that 

each variable in the process causes not only that many of the measurement have been 

quantified which have given to rise to a clear path of direction to move for a better quality 

material or essentially better properties as such. Some of the methods of characterization have 

been introduce in this chapter. 

3.3.1 Current Voltage measurement (IV) 

The power conversion efficiency of a solar cell is dependent on the Voc , Isc and the FF of the 

solar cell and is quantitatively related as shown below 

      
             

              
 

Where Voc denotes the open circuit voltage or the voltage across the load when the current 

is zero, Isc is the short-circuit current or the current flowing on shorted circuit and FF is the fill 

factor which is defined by the square-ness of the curve, it can also be called the ratio of the 

areas of the smaller rectangle (Vmp,Imp) to Larger rectangle(Voc,Isc)  where Vmp and Imp are 

the maximum voltage and maximum current respectively (Figure 3.8). The solar cell is also 

affected by two more major resistances called the shunt resistance (Rsh) and the series 

resistance (Rser) calculated using the equivalent circuit of a solar cell as shown in Equivalent 

circuit diagram for a solar cellFigure 3.9 
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 (       )
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In general, Rser is calculated by taking the slope of the IV plot where the current is zero and 

Rsh is slope where voltage is zero. An ideal solar cell would have Rser = 0 and Rsh =  . 
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Figure 3.8: IV curve for a Solar cell 

 

Figure 3.9: Equivalent circuit diagram for a solar cell 

3.3.2 Quantum Efficiency 

A solar cell converts light from the sun to energy, the sun has a large spectrum range and 

only a part of it is used by the solar cell to convert into energy. Therefore, quantum efficiency is 

needed to know the performance of the cell at different wavelengths/energy. The measurement 

definition is divided into two parts external or internal. External quantum efficiency (EQE) is 

ratio of number of collected carriers to the number of incident photons at a particular energy 
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whereas internal quantum efficiency (IQE) does not take into account the reflection losses. IQE 

is defines as the number of collected carriers to the number of photons absorbed by the solar 

cell. Figure 3.10 shows the EQE curve for a a-Si:H device where the total current density can also 

be calculated using the area under the curve.  

 

Figure 3.10: External Quantum Efficiency of a solar cell 

We also use the same setup to find carrier collectability of our devices i.e. by applying a 

forward bias (decreasing electric field) or reverse bias (increasing electric field) we can 

determine how carrier collection is affected by the lack or improved electric field. This also helps 

in determining the quality of the devices or which carrier may be affecting the device a better 

discussion has been provided in further chapters. For thin film Silicon samples, which in our case 

is mainly limited by hole collection capabilities, an important characterization method is the QE 

v/s bias measurement where we change the electric field applied on the device and measure the 

change in QE at a particular wavelength. The wavelength chosen is generally longer wavelengths 

which get absorbed at the lower part of the device close to n+ and so holes need to travel the 

longest distance to reach the p+. 
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Figure 3.11: Schematic diagram of quantum efficiency setup 

The system set-up is built in house consisting of monochromatic wavelength generation 

from a monochromator which uses a grating structure to emit a light of particular wavelength 

which is then passed through slits and then focused using a lens and mirror set-up to fall on 

either the sample or the reference photodiode. The reference photodiode is a standard silicon 

photodiode whose response is known. The sample is probed to pick up signal after being 

activated by light from the monochromator which is chopped using a chopper at 13.56Hz to 

separate the noise from outside light and monochromator a lock-in amplifier is used with the 

probing system to pick up only signal change due to light coming from the monochromator. The 

reference photodiode is used a reference for day to day changes or light intensity variation from 

the monochromator. A schematic diagram for the setup is also shown in Figure 3.11 for better 

understanding. There is also a DC bias light which is used to create photo generated carriers to 

fill midgap states and fix the quasi Fermi levels. We also use additional filters for cutting second 

or higher order light coming from the monochromator. 

In case of tandems when the cells are connected together in series we need to also 

determine how each cell is performing to make adjustments to the process for improving the 

device further. We use light bias method where we saturate one of the cells by applying for top 

cell a blue light source so that it when it is saturated with carriers any carrier generated at the 

bottom cell can be collected easily, by this we can determined performance of the bottom cell. 
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Similar method is used to measure the top cell only this time we use red light to saturate the 

bottom cell. 

3.3.3 Capacitance Measurements 

The method of using capacitance to determine properties of semiconductors has been used 

for several years. We use multiple impedance spectrometers to find two important factors in 

the device. Firstly the determination of thickness electrically is a standard method. In this 

method the device is considered to be assumed to function like a parallel plate capacitor and 

the thickness of the capacitor is found by the relationship         ⁄  , where ε is the 

dielectric constant, A is the area and d is the thickness. In case of device, the depletion width is 

measured under high reverse bias which is approximately the thickness of the intrinsic layer. 

The measurement frequency also plays an important role and the previously mentioned 

measurement is made at high frequency to avoid the influence of trap levels in the 

semiconductor.  

The influence of frequency is utilized for the measurement of defect densities and the 

doping densities in the device. This method was first proposed the Kimerling et. al.[237] where 

they showed that if voltage is applied at low frequency then at very low voltages only shallow 

traps would respond and at higher reverse bias voltages both shallow and deep defects would 

respond. Also, at very high frequencies the curve would saturate and would yield the depletion 

width of the device as shown in Figure 3.12. Further analysis into the plot in Figure 3.12 shows 

two sets of slopes where each one can be used to estimate defect density at particular region by 

using equation 

 

  
  

 

    
 
  
  

 

Where, εs is dielectric constant of semiconductor Va is the applied voltage and NA is the 

defect density. 
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Figure 3.12: Capacitance versus voltage at different frequencies [238] 

Further influence of frequency can be used to predict the level of defect at different energy 

levels using the relationship as below  

         [  (      )    ⁄ ] 

Where, ET is the trap energy level and ϑ0 = NC*σ*v, and NC is the effective density of state, σ 

is the capture cross-section and v is the thermal velocity. The method and calculation is 

explained in more details elsewhere [239, 240]. This method is used to then predict the number 

of traps at each energy level. 

3.3.4 Raman spectroscopy 

Raman spectroscopy is an important tool for quick determination of the crystallinity of the 

film/device in comparison to the most general method of using X-ray diffraction method. It is 

based on the principle of an incident photon interaction causing an inelastic collision (Raman 

scattering). The change in energy of the incident photon due to interaction with the sample is 

called as Raman shift. This depends on the vibrational frequency of the bond, and in case of 

crystalline material which has the same bond length throughout resulting in a sharp peak at a 

value, for Silicon a phonon of 64meV or a peak at 520cm-1. But, in case of amorphous samples 

the bond lengths are distributed resulting in a distribution centered on the main bond. This 

method is then used predict the crystallinity by integrating the area under the curve for the 

crystalline and the amorphous part, for silicon 520cm-1 and 480 cm-1 respectively. Other 



www.manaraa.com

73 
 

approaches are also used to quantify the crystallinity, where a third peak is used to predict the 

crystallinity of the sample. 

The important factors in the measurement are the wavelength of the laser used which 

determines at what depth is the film is being measured. Short wavelength only provides near 

surface analysis and to go deeper a long wavelength is necessary. It is also important to use low 

power/intensity to avoid unintentional crystallization due to the laser. Furthermore, exposure 

times and number of repetition to get an average value and also to decrease noise can be used 

to further improve the signal response 

3.3.5 Optical spectroscopy 

The optical properties are very important for the solar cell characterization and there are 

many important things to determine for a good solar cell. We use two optical 

spectrophotometers for our measurements namely the Cary 5000 supplied by Varian and 

another spectrophotometer from ocean optics. 

Absorption coefficient determines the ability of the material to absorb photons and is very 

important factor in determining the quality of grown films. We can also determine the bandgap 

of the grown material using this data. The absorption of a-Si:H and nc-Si:H depends on the 

growth process parameters like growth temperature, dilution ratio, dopants used etc. 

Transmission is another measurement that is regularly done. It is especially important for 

the TCO’s used since there primary function is to not absorb in the absorption region of the 

absorber as well as perform as a antireflective coating (ARC). When we deposit ARC, the 

thickness plays a major role. We deposit ~70nm (quarter wavelength ARC) for which we need to 

determine the growth rate properly to have precise control over the thickness of ARC deposited. 

For which we need to measure thickness which can be estimated by the following equation 

   
     

  (          )
 

where λ1 and λ2 are consecutive peaks or troughs and n1 and n2 is their corresponding 

refractive indices as shown in Figure 3.13. This method of calculating thickness is also valid for 

opaque films such as silicon thin films -the only change is we need to measure reflection as in 

Figure 3.13. 
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Figure 3.13: Reflection measured on a film to measure thickness 

In case of back reflectors which are textured light is not only reflected in the normal angle 

but in multiple angles.  Therefore, we pay more attention to diffused reflection where in the last 

case we looked at only specular reflection. We can measure total reflection for final 

determination of reflective quality of the back reflector as well as diffused reflection for making 

comparison of our back reflectors to improve their functionality.  

 

Figure 3.14: Diffused reflection for etched ZnO:Al substrates  
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4. Results and Discussion 

In this chapter we will look at all the work carried out during this thesis for light 

management and economic fabrication methods. We will also look at the new structures that 

have been used for this method, their working mechanisms and their performance in real scale 

devices. 

4.1 Random or Lambertian methods 

We had discussed in earlier sections the randomly oriented disordered structures. We also 

fabricated our own randomly oriented structures mainly to see and learn about their 

effectiveness in light trapping. We used two methods namely the annealed silver and etched 

zinc oxide, although more methods exists too. We have discussed the major methods of 

fabrication for the structures and shown approaches of other groups are working on in the 

Literature review 

4.1.1 Etched Zinc Oxide 

Aluminum doped Zinc oxide (ZnO:Al) was deposited on pre-cleaned SS substrates using 

magnetron sputtering. He thickness of ZnO:Al was about 1-2µm, to get randomly oriented crater 

like structures they had to be etched using dilute HCl. It was then covered with a layer of silver 

for the back reflection and finally a spacer layer of 100nm ZnO:Al was deposited. A schematic 

diagram of the structure is shown in Figure 4.1. 

 

Figure 4.1: Schematic Diagram of a device on etched ZnO:Al 
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To etch the substrate we prepared fresh solutions of dilute hydrochloric acid (HCl). The 

initial optimization took some time for us to see what etch rate would be easy for us to control 

as too high concentration etched away ZnO:Al too fast. Therefore a very dilute solution of HCl of 

0.185% has been chosen for this study. The etch rate was slow and also uneven when we just 

allowed to etch inside the solution and therefore we went for agitation of solution such that 

continuously new solvent is available for etching which lead to a uniform etching pattern also. 

 

Figure 4.2: Effect of Agitation during etching of ZnO:Al by dilute HCl 
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Figure 4.3: SEM images of ZnO:Al with increasing etching time in dilute HCl 
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We varied the etching time and took various SEM images to see the effect of etching. In 

Figure 4.3 we show how the etching time affects the change in features formed on the ZnO:Al 

after deposition of 50nm of Ag. The obvious result that emerges out here is that increase in the 

size of the feature sizes when etch time is increased and also the surface roughness (σrms) 

increases from 73.5 nm to 111nm when etch time is increased for 25 second to 35 seconds 

pictorially represented in Figure 4.4. Here I must mention that horizontally the images are in 

different scales and we are trying to show that there is a uniform change in features not only in 

the feature size but also all over the substrate. 

 

Figure 4.4: SEM and AFM images of Etched ZnO:Al 

In addition the SEM images showing structures formed that diffusely reflect light in multiple 

directions when it hits the silver surface, we also measured the reflective properties to see how 

well the substrate performs in scattering light in different directions. We measure the specular 
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and diffuse components of reflectance using an integrating sphere. We see that when we 

increase the etch time we also have better total reflection (specular + diffused) from the 

surface. But it has noticed by various groups if the surface roughness is too high it would lead to 

defects [94, 95, 119]. In our case the surface roughness increases to 73-111nm for 25 second to 

35 second etching time, and high surface roughness leads to lower Voc and drop in FF. We made 

a choice to stay at maximum of 30second etching since at higher roughness device quality 

deteriorated [94, 97]. 

 

Figure 4.5: Total Reflection from varying time of etching for etched ZnO:Al substrates 

4.1.2 Annealed Silver 

We used SS substrates for depositing a thin layer of silver (~200nm) where we also had a 

thin layer of chromium (~50nm) as an adhesive layer. The chromium was used as we found that 

without it the silver would eventually peel off from the SS which may be immediately after the 

layer deposition or even be a month later. But, with chromium as an adhesion layer there was 

no peeling unless the SS substrate was not properly cleaned.  
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Figure 4.6: Effect of temperature and time on annealing of silver[61] 

We deposited ~200nm of silver by thermal evaporation and then annealed the substrates in 

an oven at higher temperatures in air to agglomerate the deposited silver. In Figure 4.6 we show 

map of how the silver agglomerates at different conditions; on the left the change in 

temperature at constant time where at low temperatures, the agglomeration process is very 

slow it picks up pace at high temperatures and then at higher temperatures (see 500⁰C) the 

agglomeration is rapid such that the surface is depleted of silver itself. On the right in Figure 4.6 
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we show how the same effect is also valid as the time passes the agglomerates keep growing at 

one particular temperature here 400⁰C, again for 120 min of annealing the film is again depleted 

of silver. We mention that we do need a continuous film not only to support reflection also to 

keep the resistance low which would increase if there is a discontinuous film. We have made 

devices and chose for our case we get better devices for annealing at 400⁰C for 30 minutes for 

which we get a surface roughness of ~50.7nm as shown in Figure 4.7. 

 

Figure 4.7: SEM and AFM image of silver on SS annealed for 30min at 400⁰C  

4.1.3  Device Comparison 

We also fabricated devices on the prepared randomly oriented structures and compared 

them to devices prepared on SS/Ag which is a similar planar substrate as it has the silver layer at 

the bottom but instead of scattering light in multiple directions it would behave like planar 

mirror.  The comparisons have been shown for etched ZnO:Al in Figure 4.8 and for annealed 

silver in Figure 4.9 with a summary shown in Table 4.1 
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Figure 4.8: Comparison of etched ZnO to SS/Ag substrate (a)nc-Si:H device (b) a-Si:H cell (c) enhancement 

factor 
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Figure 4.9: Comparison of annealed silver to SS/Ag substrate (a)nc-Si:H device (b) a-Si:H cell (c) enhancement 

factor 
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Table 4.1: Comparison of device made on random back reflectors 

 

SS/Ag Etched ZnO:Al Annealed Silver 

nc-Si :H a-Si:H nc-Si :H a-Si:H nc-Si :H a-Si:H 

Jsc (mA/cm
2

) 15.44 10.34 18.57 12.69 17.93 11.38 

Voc (Voltage) 0.5 0.849 0.5 0.841 0.47 0.87 

FF 53.79 57 57.2 58.4 53.5 63.3 

Rseries (Ω) 74 119 51 75 60 115 

Rshunt (kΩ) 3593 10172 2.70 7.73 2.1 10.69 

Efficiency 4.22% 5.00% 5.57% 6.23% 4.51% 6.26% 

QE (800nm/700nm) 0.098 0.071 0.34 0.242 0.31 0.22 

Jsc from QE (mA/cm
2

) 15.69 11.48 19.47 12.89 17.20 13.43 

i-Layer thickness (μm) 1.72 0.251 1.72 0.251 1.40 0.233 

 

The above table shows that there is significant increment in the current density which in 

turn leads to higher efficiency both in case of etched ZnO:Al and in the case of annealed silver. 

The change in efficiency is 30+% in case of nc-Si:H and ~25% for a-Si:H for the etched ZnO:Al 

substrates whereas the annealed silver samples had little lower thickness but here also we do 

see significant improvement. In Figure 4.8(c) and Figure 4.9(c) we specify a term enhancement 

factor which compares the increase in absorption due to the back reflector the calculation is 

based on a simple back calculation of the effective absorption coefficient ta each wavelength in 

the two samples using the formula 

   ( )

   ( )
       ( )  
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Where, EQE(λ) , R(λ) and α(λ) are the external quantum efficiency , total reflection from the 

device and absorption coefficient at particular wavelength, t is for thickness of the absorber 

layer. Using this calculation we estimate the change of effective absorption coefficient and in 

plotted showing and enhancement factor greater than seven times that of SS/Ag substrates. 

4.2 Periodic structures 

Biswas & Zhou had developed the work for using a photonic crystal structure for use as a 

light trapping structure for thin film solar cells [140, 142]. The design consisted of a 2-D photonic 

crystal, and simulations were done to predict their effectiveness. The whole structure was 

simulated using the parameters such as pitch of the structures, and the geometry of the 

structure were optimized using scattering matrix method where Maxwell’s equation were 

solved in fourier domain such that maximum absorption can be achieved. The photonic 

structure has its advantages since it diffract lights which reach it in different wave guided modes 

that travel nearly parallel to the surface while randomly oriented structures scatter light in 

multiple directions. It has been shown by Springer et. al. that there may be losses during 

reflection from the textured silver surface, they measured at each reflection the loss could be 3-

8% which they attributed to excitation of surface plasmon modes and with multiple reflections 

the loss would add up rapidly at IR wavelengths [117]. The enhancement ratio predicted 

theoretically is close to 50 but including losses with a roughened reflector the enhancement has 

been estimated closer to 10 rather [241] . The absorption enhancement due to the photonic 

crystal has been shown in Figure 4.10 where at long wavelengths it performs even better than 

the lambertian limit of 4n2. 



www.manaraa.com

86 
 

 

Figure 4.10: Absorption enhancement comparison for a photonic crystal and Lambertian limit[142] 

 

Figure 4.11: (a) SEM images of the photonic crystal structure at different steps of processing (b) EQE curve 

comparison between photonic crystal and planar SS/Ag [139] 

The above results (Figure 4.10) were from simulation, we also showed it experimentally on 

the photonic crystal structure fabricated on c-Si wafer by formed by reactive ion etching by the 

work done by B. Curtin for his master’s thesis where in Figure 4.11(b) the enhancement in the 

EQE curve due to the use of photonic crystal showing higher current than the reference which is 

a planar SS/Ag substrate. In Figure 4.11(a) SEM images are shown of the photonic crystal 

structure prepared on c-Si starting from top left is the photonic crystal only and then on right is 

the after silver deposition and then followed up by ZnO:Al in the bottom left and finally is after 

the final device fabrication. In each step we notice that the depositions are conformal to the 

structure also. 
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Table 4.2: Properties of various substrates 

Max. Use 

Temp. 
Material Characteristics (good, OK, bad) 

7000C Glass Clear, brittle, good chemical resistance, cheap 

9000C Steel 
Opaque, moderate CTE, moderate chemical 

resistance, poor surface finish 

3000C Polyimide (Kapton) 
high CTE, good chemical resistance, medium cost, 

high moisture absorption  

2500C 
Polyetheretherketone 

(PEEK) 

Amber color, good chemical resistance, 

expensive, low moisture absorption 

2300C Polyethersulfone (PES) 

Clear, good dimensional stability, poor solvent, 

resistance, expensive, moderate moisture 

absorption 

2000C Polyetherimide  (PEI) Strong, brittle, hazy/colored, expensive 

2000C 
Polyethylenenapthalate 

(PEN) 

Clear, moderate CTE, good chemical resistance, 

inexpensive, moderate moisture absorption 

1200C Polyester (PET) 
Clear, moderate CTE, good chemical resistance, 

inexpensive, moderate moisture absorption 

 

But using c-Si wafer as the base substrate is not a feasible economical way to move forward, 

we had to look for different substrates to replace the wafer used in the above case. We looked 

at various possibilities of substrates listed in Table 4.2  where we have also listed the properties 

of each of the possible substrates starting with the temperature it can be used, followed by 

important characteristic properties which are important for solar cell fabrication (color coded 

for usability). The first three on the list have all been industrially applied - namely glass is widely 

used as a substrate for superstrate type devices, SS was used by the largest manufacturer of thin 

film silicon solar cells in 2000’s i.e. Uni-Solar and Kapton is used by Power film -a plant close to 

us in Boone. But, as you go down the list we have more plastic based substrates and the last two 

in the list are inexpensive with other good and moderate properties which make them a 



www.manaraa.com

88 
 

substrate to consider. PEN is our choice of material due to this beating PET due to its limits in 

processing temperature. 

4.2.1 PEN substrates 

PEN stands for polyethylnaphthalate and is going to be one of the major substrates used in 

this thesis. There were many challenges we had to face trying to adopt a new flexible plastic 

substrate for deposition rather than the old substrates like glass and SS that we used. We had to 

change our processing techniques and went through a qualification process before we could 

make devices on PEN substrates.  

4.2.1.1 Problems faced 

The first major hurdle was learning about how the polymer would behave when treated 

with heat. We worked with different variations of PEN which was treated chemically to stabilize 

it for higher temperature usage by Light Wave Power who we collaborate with for this project. 

The qualification process consisted of first testing the substrate in a conventional oven to see if 

there is very large bending or cracking. Once we were through this process, films were 

deposited on it to see if they peel off or crack. Our initial films did peel off or used to crack after 

removing from the reactor as shown in Figure 4.12. However, we realized very soon that if there 

was any moisture or oxygen in the substrates which degassed would lead to these problems. We 

took two steps that is a thin layer of metal was coated during the initial processing by Light 

Wave Power during their high temperature step that PEN did not absorb any moisture also we 

made it a practice to heat substrate in conventional oven at their deposition temperature so 

there is no degassing in the reactor. After that we were able to deposit films which were of 

better quality. 



www.manaraa.com

89 
 

 

Figure 4.12: SEM image of PEN structure showing cracks on the film 

Finally we also did make devices on PEN as shown in Figure 4.15 (planar), for fabricating 

devices we had to change the method of fabrication as most devices were fabricated at high 

temperature (mostly 300⁰C). The device fabrication process had to be modified to get 

acceptable devices, the changes made consisted of increasing the hydrogen flow and depositing 

at a higher dilution ratio for a-Si:H cells such that we did not result in void formation due to lack 

of lateral movement due to lower temperature on the substrate. As deposition temperature was 

lower we also got a material with a higher band gap which resulted in giving a higher Voc of 0.95-

1V compared to devices at higher temperature which had Voc of 0.85-0.9V. 

The next step was to go for making the 2-D photonic crystal structures on these plastic 

structures, for which we got help from our collaborators light wave power for fabricating the 

patterns on the devices through nano-imprinting technology. The working principle (as shown in 

Figure 4.13) here is that a negative stamp is fabricated and is used to stamp the polymer when 

heated and then is removed while cooling to make sure that the structure is maintained on the 

polymer and the stamp can be re-used a chemical treatment is applied which also keeps the PEN 

substrate be able to handle higher temperature as mentioned before. The stamp can be re-used 

to make many substrates in the same way. It is important to mention here this process is also 

applicable for roll to roll processing where the roll would contain the inverse stamp and the 

structures can be fabricated as the polymer moves through. 
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Figure 4.13: Schematic diagram for nano imprinting the polymer with desired structure 

 

Figure 4.14: SEM image of 2-D photonic structure on PEN substrates 

In Figure 4.14 we show the SEM image of the 2-D photonic structure which has cylindrical 

holes arranged in a triangular lattice which imitates the theoretical design. The cylinders have a 

diameter of ~450nm and the pitch is ~760nm and a depth of 250nm. 

The next step was to prepare these fabricated structures by Light Wave Power for 

fabrication of solar cells and we followed the same procedure as mentioned for the planar PEN 

substrates. Here we faced more obstacles as the devices fabricated initially were having a lot of 
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shunting problems (drop in voltage mainly due to high recombination current which may be due 

to formation micro cracks at the sharp features) in contrast to planar PEN devices that did not 

have shunting problems. Due to shunting we had a lot of devices failing and even devices which 

were working had large variations of Voc and FF. To resolve this uncertainty, we changed our 

fabrication technique and increased the n+ thickness on which we got better devices in terms of 

only shunting though as shown in Figure 4.15. We suspect that it may be due to the sharp edges 

formed in the new structure as shown in Figure 4.16.  

 

Figure 4.15: High resistance problem in textured PEN substrates 

 

Figure 4.16: Problems faced with textured PEN substrates 

But even with thicker n+ layer we did not have good results initially, but we did have control 

over Voc but had very high series resistance and as shown in Figure 4.15, we suspected this 
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problem to be coming from incomplete coverage of silver which additionally may not have been 

thin but may be due to the fact we are doing thermal evaporation where keep the substrate 

fixed may provide shadowing to some inner areas. Although it can be argued that if we rotated 

the substrate in the x-y plane we may have been able to deposit all areas. But due to limitation 

with our equipment, we adopted a thicker layer of silver (~200nm) to get complete coverage. In 

case of commercialization we can also do sputtering which has better coverage than 

evaporation. A new improved structure was prepared as shown in Figure 4.17. 

 

Figure 4.17: Improved structure for deposition on textured PEN substrate 

The device structure has an n+ layer at the bottom of the cell as shown in Figure 4.1 where 

the n+ is between the i-layer and the back reflector. Photons going through the highly doped p+ 

and n+ are absorbed but effectively lost as the carriers generated due to photons here would 

recombine inside the doped layers and be lost. We tried to design the n+ to have a higher 

bandgap such that it does not absorb in the same wavelength region as that of the i- layer. The 

p+ is less effective in absorption since the thickness is usually less than ~20nm. The improved 

design for textured PEN substrate (Figure 4.17), however has a thicker n+ which makes it even 

more important to make a higher bandgap n+ layer. 

The bandgap can be increased by doping with carbon, however as the bandgap increases so 

does the electron affinity and there has to be careful design such that the resistance and 

bandgap can be kept in check. We performed a number of experiments trying to control the 

bandgap while not increasing the series resistance. The major challenges here were that we had 
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to decrease the silane/methane flow rate to increase the bandgap while the phosphine was kept 

high to keep the film conducting. We also noticed that if we changed the power we had 

different amounts of carbon in the film which changed the properties of n+. After the 

optimization of a-(Si,C):H n+ we started making devices on the PEN substrates. 

4.2.1.2 a-Si:H cells on PEN 

 

Figure 4.18: Current-Voltage measurement of a-Si:H device on PEN substrates 

 

Figure 4.19: EQE and enhancement factor of a-Si:H device on PEN substrates 
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We show the IV characteristics of a-Si:H device fabricated on nano hole PEN substrates both 

textured and on planar PEN and as a baseline device on SS is also shown. All the devices are 

fabricated with a similar fabrication method, keeping all the parameters and conditions similar, 

except for the different substrates. In Figure 4.18 we see that there is a current enhancement of 

~28% from SS to planar PEN with a silver mirror like structure at back. While a change of more 

than 60% in current density can be observed when we have a textured 2-D photonic structure 

on PEN substrate. When we compare the 2-D photonic structure to the planar structure to see 

the effective light trapping from the photonic structure, we obtain approximately 30% increase 

in current density. The overall efficiency was ~7.5% for the cells deposited on the 2-D photonic 

structures on PEN.  

In Figure 4.19, we show the external quantum efficiency for the cells whose IV curve is 

shown in Figure 4.18, and we observe that the current enhancement is due to increased 

absorption at longer wavelengths in the red and infra-red region. The enhancement factor has 

been calculated by comparing the effective absorption coefficients of the photonic structure 

and the planar PEN devices. The enhancement factor when using SS is as the baseline is much 

higher. The photo of the final device on each substrate is shown in Figure 4.20. It should also be 

mentioned here that the planar PEN structure is not a completely flat silver substrate due to 

some agglomeration taking place on plastic substrates and also for plastic substrates lower 

temperature annealing can lead to agglomeration unlike the case for SS shown in section 4.1.2.   
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Figure 4.20: Photographs of PEN substrates (a) photonic hole structure and (b) Planar PEN 

4.2.1.3 a-Si:H/a-Si:H tandem solar cells 

Tandem cells can be fabricated using a-Si:H where we make two junction tandems 

connected in series where the voltages add up but the cells have lower currents as the cells have 

to share the photons in their absorption wavelength range. We prepared a-Si:H/a-Si:H tandem 

solar cell with a thinner bottom cell as the photonic structure. To increase the effective current 

in the bottom cell, the top cell is made thinner about quarter thickness of the bottom cell. The 

junction between the cells in a tandem cell is made with a thin p+ and n+ layer, but at low 

temperature it is more difficult to fabricate the junction layer. We can make either a-Si or nc-Si 

‘n+’ at the junction layer when nc-Si n+ can give better conductivity; it also lowers the Voc as 

shown in Figure 4.21. Therefore, we have continued with a-Si n+ with more phosphine. 
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Figure 4.21: Comparison of a-Si and nc-Si n+ as junction layer in a tandem cell 

We made two identical tandem cells on planar and textured PEN substrates after optimizing 

a working a-Si n+ layer in the junction layer with additional phosphine to increase conductivity. 

The tandem cells were made at the same temperature of 200⁰C for both the top and bottom 

cells. The results are shown in Figure 4.22(a) where we get ~25% improvement in the current 

density in a tandem cell on a 2-D photonic structure compared to a planar PEN substrate, similar 

to the improvement show in single cells in last section. We also show the EQE curve for the 

tandem cell on the photonic structure on PEN substrate showing a current density of 

6.23mA/cm2 on the top cell which would limit the current density of the tandem cell. The overall 

efficiency is ~7.4% for the tandem cell. The Voc is 1.74V which is lower than the addition of two 

single junction cells which may be due to the junction layer moreover the FF also suffers due to 

the junction layer which is ~67%. There are inherent advantages to this tandem cell in 

comparison to the single cell as the top cell which would absorb most of the high energy 

photons would be very thin and hence would have a high electric field. Moreover, the bottom 

cell is also now protected due to the top cell absorbing the high energy photons. This helps 

reduce the effect of light induced degradation on a tandem cell compared to a single cell [24].  
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Figure 4.22: IV and EQE of a-Si:H/a-Si:H tandem solar cell on PEN substrates 

Although we were able to show enhancement in current with an a-Si:H/a-Si:H tandem cell, it 

should have materials of complimentary band gaps to be really effective. Various groups have 

establishes that a combination of nc-Si:H and a-Si:H prove to be very close to the best choice of 

material for a two junction tandem cell [66].  

4.2.1.4 nc-Si:H on PEN substrate 

The fabrication of nc-Si:H on a PEN substrate was difficult due to lower deposition 

temperature. Nc-Si:H requires higher deposition temperature for nucleation of crystallites, or 

much higher hydrogen dilution ratios to crystallize. We used hydrogen profiling here to fabricate 

the devices whereas most devices are fabricated in the superlattice method in our group. A 

single nc-Si:H cell grown at temperatures below 200⁰C is shown in Figure 4.23 where we can 

extract nearly an extra third of the current density of the planar PEN by employing a photonic 

structure. The effect of the photonic structure is exemplified by the increased absorption in the 

red and the infra-red region shown in Figure 4.23(b), proving that in both a-Si:H and nc-Si:H we 
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can get a about 30% improvement in current density by employing 2-D photonic structure on 

plastic substrates with fabrication temperature below 200⁰C. 

  

Figure 4.23: IV and EQE of nc-Si:H single cell on PEN substrates 

Furthermore, we fabricated micromorph cells with both nano crystalline and amorphous 

layer grown at ~200⁰C as shown in Figure 4.24. The micromorph cell gives an efficiency of ~8% 

with a current density of 9.8mA/cm2 which is limited by the top a-Si:H layer. The Voc have added 

up from both the cells to result in a Voc ~1.4V which means that there is low loss from the 

junction layer. Although in this cell we have deliberately made the top cell limiting because the 

bottom cell performance is limited with a low FF which can be observed in Figure 4.23(a). The 

nc-Si:H cell is limited in efficiency due to carrier collection problems which is mainly due to the 

low quality of the intrinsic layer from the low growth temperature we are forced to employ due 

to the limitations from the PEN substrate. 
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Figure 4.24: IV and EQE curve for micromorph cell on textured PEN substrate 

4.2.2 Kapton Substrate 

Due to the lower quality of nc-Si:H at low temperature deposition, we looked at substrates 

that can handle higher temperature. The choice of substrate was Kapton, also called polyimide, 

which can handle deposition temperatures of 300⁰C. The same 2-D photonic structures were 

fabricated on Kapton substrates with the help of Light Wave Power. The nano imprinted 

structures were then examined under SEM and AFM as shown in Figure 4.25 which show that 

the embossed 2-D photonic hole structures can be successfully imprinted on Kapton also. The 

SEM image is taken at an edge of the patterning showing the continuous array of holes arranged 

in triangular lattice.  
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Figure 4.25: 2-D photonic structures on Kapton substrate (a) SEM image and (b) AFM image 

4.2.2.1 nc-Si:H cell on Kapton 

The next step was the fabrication of nc-Si:H on the nano imprinted Kapton substrates which 

can handle higher temperatures. Here we have used a superlattice design[64, 242] to deposit 

nc-Si:H, with alternating layers of nc-Si:H/a-Si:H allowing independent control of crystallinity 

[243, 244]. The solar cell with a thin ~816 nm nc-Si:H/a-Si:H   absorber layer , having a 12 period 

structure. The superlattice was formed by alternately cycling the RF power for 180 s at high 

power (30W) for nc-Si and 90 s at low power (3W) for a-Si:H respectively. Stopping the nc-Si:H 

growth by reducing the RF power prevents the nano-crystallites from growing and coalescing, 

and prevents the large angle grain boundaries that are detrimental for electronic transport 

[242]. Growth of the a-Si:H layer generates a new seed layer on which the next layer of nc-Si:H 

nucleates. The parameter space for layer thicknesses has been studied in detail by Kocka et al 

[243], and it was found that 3-5 nm thick a-Si:H layers can interrupt growth of nc-Si:H. Having 

such thin a-Si:H layers is advantageous for reducing light-induced degradation effects, and 

increasing light absorption. Using such thin a-Si:H layers permits photo-excited carriers to 

transport through such a-Si:H layers without losses in the presence of the external field. Photo-

excited carriers generated in a-Si:H layers can easily diffuse to the neighboring nc-Si:H layers and 

transport through thin a-Si:H layers to the respective electrode. The constraints of achieving 

high electronic transport, rather than enhancing optical absorption, dictate the individual layer 

thicknesses. Growth conditions were optimized for growth temperatures ~225°C, to prevent 

thermal expansion and degradation of the kapton substrate. Raman measurements indicate a 
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crystalline volume fraction of ~45% and amorphous fraction of 55%, consistent with these 

values.  

 

Figure 4.26: (a) Norm. EQE and (b) enhancement factor of supperlattice nc-Si:H device fabricated on embossed 

Kapton 

The external quantum efficiency (EQE) was measured as a function of the wavelength 

shown in Figure 4.26(a). There is a highly enhanced collection of long-wavelength photons from 

600 nm to the band edge of 1100 nm. The QE-derived short circuit current (Jsc), is enhanced 

from 17.3 mA/cm2 to 20.9 mA/cm2, for a total enhancement of 21%. The current on similar 

thickness cells made on stainless steel is 14 mA/cm2, yielding a PC-based enhancement of ~50% 

over the stainless steel substrate. The enhancement factor is shown in Figure 4.26(b), or the 

ratio of the QE between textured and flat substrates, exceeds 2 for wavelengths above 800nm, 

and approaches 4.5 at the band edge. We expect that considerably higher currents (>28 
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mA/cm2) could be obtained with thicker super-lattice i-layers, thereby making such super-lattice 

devices competitive with the state-of-the-art nc-Si devices. 

The current-voltage (I-V) characteristic in Figure 4.27 demonstrates low series resistance 

and excellent collection of carriers at reverse bias. The open circuit voltage (Voc) and fill factors 

(FF) are is 0.45 V and 62% for the planar and 0.42 V and 60% for the textured cell, typical of nc-Si 

devices. Maintaining high quality n and p-layers is essential for good device results. We find a 

power conversion efficiency (PCE) of 6% for the textured vs. 5% for the planar solar cell. Higher 

cell efficiencies are expected for thicker cells. 

 

Figure 4.27: Current-Voltage for nc-Si:H cell on Kapton substrate 

4.2.2.2 Micromorph cell on Kapton 

The aim of getting a good nc-Si:H single cell was to apply it to get higher efficiency by 

fabricating a tandem micromorph device. We fabricate the bottom nc-Si:H cell at higher 

temperature (250⁰C) as mentioned in last section while the a-Si:H cell is fabricated similar to 

conditions that were used before during fabricating on PEN substrates (200⁰C). 
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Figure 4.28: IV curve of tandem cell on textured Kapton substrate 

 

Figure 4.29: Normalized EQE curve for a tandem cell on textured kapton substrate 

The micromorph cell fabricated on the kapton substrate with 2-D photonic structure 

resulted in a cell which gave ~9.9% efficiency (Figure 4.28). We optimized the both the bottom 

and top cell to get very good current matching in the cells to get a current density of 

10.2mA/cm2 shown in Figure 4.29 while the top cell give 10.29mA/cm2. During the optimization 
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we were able to fabricate devices with high FF (>70%). The open circuit voltages also added up 

to give cells with (Voc>1.32V).  

4.2.2.3 Problems faced with Kapton 

During fabrication of devices on kapton substrate we were mostly affected by the difference 

in coefficient of thermal expansion which led the substrate to bend or curl up after the 

film/device was grown on kapton. This made device characterization and deposition of ITO very 

difficult on it. We had to be very careful not to put extra stress on the film which may lead to 

formation of cracks.  

To avoid this problem we started to load kapton on a SS substrate, i.e. before depositing any 

layer on the kapton substrate it was stuck to a SS plate that we used for our standard deposition 

with a polyimide tape to hold it. The substrate was kept on all the steps from then on to the 

final characterization of the device. 

4.2.3 Polymer on SS (POS) 

SS is a widely used substrate which is cheap and readily available. For application as a 

substrate SS has to be polished smooth on at least one side (for planar) such that it does not 

lead to defects in the films growing on it. Surface finishing the steel for thin film deposition adds 

to cost, whereas SS can be rolled thin to be used as a flexible substrate. We can also try adding 

controlled modified structure on the steel itself but it still remains difficult due to intrinsic nano 

meter sized structures on steel. If we consider polymers then they have lower working 

temperature which limits their usage. Now, if we consider the pros of SS being both cheap and 

widely available, we can fabricate structures on PEN by nano imprinting easily. Therefore, we 

used polymer coated on SS that would give the polymer mechanical support such that they can 

be used at higher temperatures.  
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Figure 4.30: (a) SEM and (b) AFM images of POS for testing effect of annealing 

The structures were prepared on POS with either PEN or kapton coating on SS and then 

tested if the structures hold at higher temperatures or the features formed from imprinting 

were lost or deformed. The methodology consisted of heating in oven or even in the reactor and 

then observing SEM and AFM images and measuring different characteristic features to see if 

there was any change in the structure due to the annealing at higher temperature as shown in 

Figure 4.30. The images showed that the structures formed remain intact at high temperature 

annealing of 300⁰C. This result gave us more room to fabricate devices while we still had flexible 

and cheap substrates which could be nano-imprinted to form structures with the help of Light 

Wave Power. 

We then fabricated nc-Si:H devices on the POS substrates, the IV curve and EQE have been 

shown in Figure 4.31 and Figure 4.32 respectively. The devices here are also fabricated at 250⁰C 

whereas it can also be fabricated at higher temperatures if required. The enhancement is similar 

to the devices fabricated in kapton without having to deal with the bending of it. Additionally 

kapton is also not that cheap a substrate which has been noted from Table 4.2 
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Figure 4.31: IV curve of nc-Si:H device on POS 

 

Figure 4.32: EQE curve of nc-Si:H on POS 

4.2.4 Photonic-Plasmonic Structures 

Plasmons are created due to the interaction of metal syrfaces with electro-magnetic waves 

and it is widely used for solar cell applications for current enhancement as discussed in the 

literature review. We are going to specifically consider the surface plasmon modes that form at 

the interface of metal and semiconductor layer. These surface plasmons propagate parallel to 

the metal semiconductor interface as they are longitudinal. The surface plasmon modes have 

large field intensity in the absorber layer, where it decays exponentially into the semiconductor 

as shown in Figure 4.33 [85, 176]. This method has been used by various groups to make 
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plasmonic solar cells using periodic structures to couple the modes for to increase absorption in 

solar cell [85, 129, 131, 133, 245]. In case of silver at the back, the plasmon mode is shifted to 

near infra-red by using (εs +2εm =1) where εs and εm stand for the dielectric functions of 

semiconductor or the metal respectively. 

 

Figure 4.33: Schematic showing Surface plasmon mode 

4.2.4.1 Concept of periodic photonic-plasmonic structures 

When we use roughened silver at the back reflector, there is a creation of localized surface 

plasmons in the Ag nano structures but they may not lead to increase in absorption which has 

been note by other groups for randomly textured surfaces which may lead to losses. However it 

is possible to use these structures also effectively re-radiate under appropriate conditions [176, 

182]. Thus appropriate design can lead to increased absorption with the help of a periodic 

structure with a geometry that is favorable for plasmonic enhancement. 

There are two modes of enhancement in a periodically structured back reflector. Firstly, the 

photonic enhancement is due to incident light being diffracted into wave guided modes 

travelling parallel to the layers, where at long wavelengths we have many available wave guiding 

modes. Another enhancement is due to plasmonic in nature where if the shape and size of 

metal particle is favorable then it leads to formation surface plasmon polaritons which 

propagate parallel to metal surface and also provide a field decaying into the semiconductor 

which leads to increased light intensity in the region close to metal and therefore enhanced 

absorption . These two mechanisms together can couple to each other to give higher enhanced 

absorption than when they act separately. This method is shown figuratively in Figure 4.34 

where we can combine both the methods to get a periodic structure with nano pillars. 
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Figure 4.34: Concept of photonic-plasmonic structures 

The simulation of the devices showed that the Lambertian limit of 4n2 enhancement can be 

exceeded by employing a photonic plasmonic structure. A comparison is shown in Figure 4.35 

with different structures i.e. the Yablanovitch limit [71] (which is the same as 4n2 limit,) then the 

additional curve is 4n2 limit with the additional reflection loss from the top therefore it takes 

into consideration the light that enter the cell only, the third one is a flat silver substrate and is 

compared to photonic-plasmonic structure. The simulation predicts that the designed structure 

is significantly better than the flat silver and it also exceeds the classical 4n2 limit when 

reflection losses are added and is comparable to the Yablanovitch limit and can do even better 

at some wavelengths above 900nm. Further details about it can be found on the simulation 

details in a paper by Biswas et. al. [75]. 
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Figure 4.35: Comparison of absorption for different methods of light trapping through simulations [75] 

4.2.4.2 Devices on Photonic-Plasmonic structures 

We then tried to fabricate the photonic plasmonic structures on flexible substrates by nano 

imprinting technology. We have named the photonic-plasmonic structures as nano-bump and 

the photonic structures as nano hole due to their shape and for ease of communication. The 

fabricated structures were characterized under SEM which showed that the pitch is ~750nm as 

shown in Figure 4.36(a). We also show an SEM image of the nano-bump structure after the 

deposition of silver and ZnO:Al. The AFM image reveals that the fabricated structure has 

features (nano pillars with smoothened top) of height ~180nm shown in Figure 4.37. The 

structure was then pretested as we had done for other substrates mentioned before, and then 

nc-Si:H devices were fabricated on them.  



www.manaraa.com

110 
 

 

Figure 4.36: SEM Images of nano-bump structures on Polymer on SS. (a) As received (b) with Ag/ZnO:Al 

 

Figure 4.37: AFM image of nano-bump structure 
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Figure 4.38: IV curve for nano-bump structure in comparison to other structures 

 

Figure 4.39: EQE curve for nano-bump structure in comparison to other structures 

The next step in improving the current density was using the nano-bump structure 

(photonic- plasmonic), which further improves the current in the cell. In Figure 4.38 and Figure 
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4.39 the IV curve and EQE curve for nc-Si:H device of thickness ~1µm is shown prepared on 

different substrates while we had already seen improvement due to nano-hole (photonic) 

structure there is further increase in current density with nano-bump. The increase in current is 

mostly between the 600-800nm for nano-bump compared to nano-hole, while the rest of the 

wavelength are comparable. 

Superlattice cells: An additional simulation is also shown in Figure 4.40(a) for a nc-Si:H/a-Si:H 

superlattice absorber we find an optimum structure with tapered nano pillars of height 180 nm, 

a base radius of R/a=0.4 (where a is the pitch), and the height of the front texture d1=105 nm, 

demonstrating conformality between the front and bottom texture.  We have adopted the 

absorber layer thickness of the experiment of 816 nm, comprising of alternate layers of nc-Si:H 

(60 nm) and a-Si:H (8 nm) and 12 periods. By simulating the wavelength dependent absorption 

in Figure 4.40(a) and calculate the weighted absorption <Aw> weighted by the solar spectrum, 

over the entire wavelength range of interest (400-1100nm). This yields an absorption 

enhancement of more than 25%. At wavelengths (λ>600nm), the photon absorption is 

substantially enhanced over a flat Ag-back reflector shown in Figure 4.40(a) generating a 

predicted overall enhancement of 25% of the weighted absorption or the short circuit current. 

We show for comparison the expected absorption for a loss-less Lambertian back-reflector, in a 

nc-Si:H absorber layer of the same thickness, where the path length is enhanced by 4n(λ)2 at 

each wavelength λ [246], where n is the wavelength dependent refractive index. This 

enhancement factor can approach ~50 in silicon. The plasmonic back-reflector can exceed the 

Lambertian back-reflector near the band edge (>800nm). At shorter wavelengths the absorption 

maxima of the plasmonic back-reflector lie above the 4n2 limit of nc-Si:H, although the overall 

absorption is lower. However there are significant losses [117, 247], from excitation of surface 

plasmon modes in the random textured back reflector, and it has been predicted [241] that 

experimental enhancements are considerably less than the 4n2 factor. 

Angular measurements of nc-Si:H cells: We also measured angular dependence of the cells 

with varying incident angle of illumination. The simulations suggest that periodic back reflectors 

perform better when the light is incident 15⁰-40⁰ from normal incidence i.e. the nano-bump 

structure is more effective in channeling light when incident at an angle. In case of experimental 

work on fabricated devices we see that absorption is less affected by the angle of incidence for 

textured substrates with a maximum at 19⁰ in case of this measurement. Whereas, we see that 
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for planar structures the absorption decreases mostly monotonically after 10⁰ from normal. This 

is important as the sun also shines at different angles through the day. 

 

Figure 4.40: (a) Simulation result for superlattice structure on photonic-plasmonic structure and (b) schematic 

diagram of a superlattice cell on photonic-plasmonic structure 

 

Figure 4.41: Angular dependence of photocurrent of solar cell (a) simulated result on photonic plasmonic 

structure and (b) Experimental comparison between planar and periodic structure. 

4.3 Comparison with randomly roughened structures 

We have discussed various photon management strategies that maximize the photo-

current. Though we showed that simulation shows that nano-bump or photonic-plasmonic 
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substrate would outperform others there is need for a systematic comparison experimentally on 

devices to show which structure performs the best. We do this by systematically comparing nc-

Si:H solar cells grown on a series of randomly roughened and periodically textured back-

reflectors (BRs). To make meaningful comparisons, the nc-Si absorber layer thicknesses were 

kept the same and the solar cell device architecture were identical in the entire series of solar 

cells on both families of substrates.  

For experimental comparison, we used six distinct types of back reflectors. The first was a 

planar SS substrate with no metallic coating. The next type was a SS substrate with a Cr (5 

nm)/Ag (200nm) layer deposited on it, followed by 80 nm of ZnO.  The third type of back 

reflectors were made from annealed Ag/ZnO deposited on SS as discussed in section 4.1.2. The 

fourth textured reflector was fabricated from etched ZnO back reflectors prepared by the 

methods described in section 4.1.1. A distribution of feature sizes between 400 -1500 nm was 

observed in both types of roughened substrates (third and fourth families). The thin ZnO layer 

on top of Ag prevents the interaction of Ag with Si during and after the device deposition. 

   

 

Figure 4.42: SEM images from the top of ITO showing the conformal growth of the solar cell on (a) nano-bump, 

(b) nano-hole and (c) etched ZnO/Ag 
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Figure 4.43: Reflection from top of the ITO after device fabrication on each substrate 

To compare randomly roughened BRs with periodically textured substrates, we utilized the 

SS substrates with periodic nano-structures prepared using nano-imprint lithography at Light 

Wave Power. The pitch of the periodic pattern was ~750 nm, determined to be an optimum 

following extensive rigorous scattering matrix simulations [75, 136, 142]. The nano-bump 

(Figure 4.36), a feature found in simulations to enhance light absorption with a height of ~180 

nm, near the optimum. The nano-hole arrays(Figure 4.30) had depths of 200 nm as optimized 

previously[135]. The above sequence of Ag/ZnO deposition, followed by the deposition of n-i-p 

layers at temperatures below 250⁰C, was performed on these periodically textured BRs. The 

cells grow conformally as shown in Figure 4.42, with the substrate pattern observed at the top 

of the cell. The reflectance also varies with the structure as the incoming light is also affected by 

the texture on top of the surface as we see from Figure 4.43 the reflectance from textured 

substrate are much lower due scattering on ITO leading to less light getting reflected back 

compared to flat Ag on SS. 

Before device fabrication, we performed optical measurements to characterize the 

randomly roughened BRs used for comparison substrates by measuring reflectance which is 

similar to the data shown in Figure 4.5 for etched ZnO:Al. These comparison reflectors had 5nm 
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Cr and, 200nm Ag, 80nm ZnO:Al on them. We selected annealed Ag and etched ZnO:Al 

reflectors as benchmark “best” reflectors, because they had a structure similar to that shown in 

Figure 4.4 for etched ZnO:Al and Figure 4.7 for annealed silver that leads to very high diffuse 

reflectance, exceeding 70% over the entire spectral range (400-1100 nm), comparable to the 

state-of-the-art [103, 248-250]  

To enable meaningful characterization of randomly roughened BRs with periodically 

textured BRs, nearly the same thickness of intrinsic layers (0.9µm) and exactly identical solar cell 

architecture was followed on both substrates. The intrinsic layer crystallinity was kept at ~55% 

which was verified by Raman spectroscopy. We performed both optical and electrical 

characterization to compare nc-Si:H solar cells made on the six families of  substrates. We 

measured both device I-V curves shown in Figure 4.44 and the EQE to obtain the wavelength 

dependent photo-current between 400 -1100 nm (Figure 4.45) for all devices to confirm the I-V 

curves. We observe the EQE to have a maximum of ~90% near 530 nm. We used a -1.0 volt bias 

measurement in EQE to ensure complete collection of photo-generated carriers. In general, 

there was only ~2-3% difference between EQE at 0V and at -1 V. Similarly, the discrepancy 

between actual currents observed in I-V testing under the simulator and calculated from QE was 

also within 2-3%.  
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Figure 4.44: IV characteristics for nc-Si:H solar cells on various substrates namely SS, flat Ag, random textured 

annealed Ag/ZnO, random textured etched ZnO/Ag, periodic nano-hole and periodic nano-bump substrates. 

 

Figure 4.45: EQE in reverse bias for nc-Si:H solar cells on various substrates namely SS, flat Ag, random 

textured annealed Ag/ZnO, random textured etched ZnO/Ag, periodic nano-hole and periodic nano-bump 

substrates. 

The progression of the results for the currents estimated from EQE is given in Table 4.3 and 

has been extracted from Figure 4.45. The reason for calculating currents from EQE is because 

this calculation is independent of the state of the solar simulator, i.e. the simulators always vary 
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a few % over time, and measuring EQE and then multiplying by the standard photon spectrum 

eliminates the errors due to this simulator creep. We found that the actual currents from 

measured I-V curves were within a 2-3 % of the calculated currents. 

Table 4.3: Summary of devices fabricated on different substrates 

Type of Back Reflector 

Jsc % Enhancement over 

(mA/cm2) SS+Ag Bare SS 

References 

Bare SS 14.2 -- 

 

SS + Ag 16.1 -- 13 

Random texturing 

Annealed Ag/ZnO 20.4 27 43 

Etched ZnO 19.9 18 39 

Periodic Texturing 

Nano Hole/Ag/ZnO 20.4 27 43 

Nano pillar/Ag/ZnO 21.5 34 51 

 

The data in Table 4.3 show that the lowest current is obtained for cells deposited on bare 

SS. Putting Ag on SS improves the current by 13%. Using either etched ZnO + silver gives a higher 

current. Using either annealed Ag or nano-holes imprinted substrates improves results and 

shows a 27% improvement over flat silver and finally, the nano-bump (photonic-plasmonic) 

structure gives the best results, an increase of 34% over flat silver. 

The EQE show that cells on the Ag coated nano-hole, nano-bump, and randomly roughened 

substrates are considerably enhanced over the flat Ag/ZnO and SS substrates at long 

wavelengths (>580 nm) up to the band edge (1100 nm).The EQE oscillations for the periodic 

substrates are due to the diffraction of light from the periodic BR. The EQE for the photonic 

plasmonic back reflector exceeds that of the etched ZnO and annealed Ag BRs over a wide 

wavelength (λ=580-800 nm). It is very significant that the photo-current Jsc for the periodic 
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nano-bump substrate is the highest (21.5 mA/cm2),  exceeding that of the randomly roughened 

annealed Ag BR. the etched ZnO/Ag and a simple nano-photonics structure by comfortable 

margins-margins much greater than the experimental uncertainties. 

Note that for maximum plasmonic enhancement the back n+ layer should be very thin so 

that the reradiated photons from the plasmonic effect are not absorbed directly into it. Our 

devices had relatively thick back n+ layers, ~0.25 µm. This was done to avoid shorts. Calculations 

show that the best effects are obtained when the back n+ layer thickness is <100nm.  

We chose absorber layer thickness of ~0.9µm, typical for micro-morph cells, and   our 

expectation is that these conclusions will be observed for other cell thicknesses. Although 

surface plasmons can cause losses in random back reflectors, it has been proposed that a 

substantial fraction of light coupled into localized plasmonic modes at the Ag/ZnO interface can 

be re-radiated as scattered light in optimized textured back reflectors[251], and dynamical 

effects need further understanding. 

The external quantum efficiency (EQE) for the various solar cells as a ratio of to that of the 

flat silver substrate as a function of wavelength is shown in Figure 4.46. The highest EQE is for 

the periodic back reflector of nano-bumps over the entire spectral range. We further validated 

these conclusions by calculating the apparent optical absorption coefficient α(λ) for the solar 

cells (Figure 4.47) on the different substrates, factoring out slight variations in the thickness(t) of 

the absorber layers and the reflectance for various substrates which is shown in Figure 4.43. This 

yields highest optical absorption for the periodic back-reflector of nano-bumps. The 

corresponding current-voltage measurements show the highest current (20.5 mA/cm2) for the 

nano-bump back reflector which is significantly higher than the next value of 20 mA/cm2 for the 

annealed Ag/ZnO back reflector, with values at a reverse bias of -1V. 
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Figure 4.46: Enhancement factor of various substrates relative to flat silver substrate 

 

Figure 4.47: Calculated effective absorption coefficient of nc-Si:H cell of 0.9µm in different substrates 
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The highest external quantum efficiency and absorption coefficient was found for the 

periodically textured nano-bump back reflector. This photonic-plasmonic back reflector also 

exhibited the highest current density. This indicates that the periodic photonic-plasmonic back-

reflectors have a device performance that may exceed the commonly used randomly textured 

back reflectors. The reasons underlying these results are the highly beneficial diffraction from 

the periodic texture, resulting in densely spaced waveguide modes, where light propagates 

parallel to the interface. Such modes cannot be realized with randomly textured back reflectors. 

Furthermore the propagating surface plasmons in the periodic photonic-plasmonic back 

reflectors are highly beneficial in enhancing absorption, with large light concentration near the 

back reflector. 

4.4 Modified structures 

Both randomly textured and periodic back-reflector arrays increase the photon path length 

by different mechanisms. It is an open question which mechanism is more effective, although 

we showed in section 4.3 that photonic-plasmonic back reflectors have slightly higher current 

than randomly textured substrates. An interesting direction is to combine the properties of 

randomly textured and periodically textured photonic-plasmonic back-reflectors into a single 

structure, thereby utilizing the advantages of both types of structures. The basic idea is 

illustrated schematically in Figure 4.48(a) where the device utilizes a 2-d photonic-plasmonic 

structure based on simulation. In Figure 4.48(b) we show a device on a modified photonic-

plasmonic substrate where random smaller-scale structures have been incorporated into 

periodic structure. This is analogous to having small scale random scattering features 

superimposed on larger scale features [252].  

 

Figure 4.48: Schematic diagram of device structures on (a) photo-plasmonic substrate (b) 

modified photo-plasmonic substrate 

We developed modified photonic-plasmonic substrates based on the tendency of silver to 

agglomerate on heating in air, to form silver islands. We post-annealed silver after evaporating 
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~200 nm of Ag on the photo-plasmonic substrates at room temperature in a vacuum chamber at 

pressures <2x10-6 Torr. The photonic-plasmonic substrates were annealed in air at various 

temperatures and the substrates were then observed under a scanning electron microscope.  It 

was found that low temperatures and short times were enough to initiate the agglomeration as 

shown in Figure 4.49(a), in contrast to the higher temperature or longer times used in the 

random annealed silver back reflector. We observed that at temperatures close to 250 °C we 

lost the regular periodicity of the underlying photonic-plasmonic substrates as the Ag 

agglomeration was very rapid and could overwhelm the underlying structure as shown in Figure 

4.49(b). A second proof of the effective change due to high temperature annealing is shown in 

Figure 4.50 where we see that after annealing at high temperature the diffused reflection has 

lost the effect from the periodic structure (the characteristic crest and troughs), while annealing 

at 150⁰C still follows similar trend as that of the un-annealed structure. Therefore, a lower 

temperature of 150°C was chosen and anneal times were varied to obtain different degrees of 

roughness. 

 

Figure 4.49: Effect of annealing at (a) 150⁰C and (b) 250⁰C for 10 minutes in air 
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Figure 4.50: Diffused Reflection of nano-bump structure after annealing in air for 10min at 

different temperatures 

Figure 4.51 shows the development of modified photonic-plasmonic substrates by the 

annealing process. Figure 4.51(a) shows the substrate at very short anneal time of 1 minute, in 

which most of the structure confirms with the pristine sample. At higher magnification we 

observe small grains of silver with sizes of ~20-70 nm spread uniformly in the sample. As we go 

to longer annealing times we see that the silver grains start growing and the conical structure on 

the photo-plasmonic substrate loses some of its features due to agglomeration of silver. At the 

region between the cones there is development of more complex disordered structures due to 

Ag agglomeration. As the annealing time increases from 1 to 15 minutes, the cones acquire 

more random shapes and the silver agglomeration increases as is evident from Figure 4.51(b) to 

Figure 4.51(d). A similar change can be observed from the AFM images also shown in Figure 4.52 

moving from left to right the silver grains start to look like they are forming on top by 5min 

anneal and then in 15min anneal time we see the development of lot of small grains of silver. 
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Figure 4.51: SEM images of modified photonic-plasmonic structures by annealing silver in 

air at 150°C for (a)1 minute (b) 5 minutes (c)10 minutes (d) 15minutes 

 

 

Figure 4.52: AFM images of modified photonic-plasmonic structures 

Even though random nano-structures start nucleating, the structural periodicity is still 

maintained, as seen in the AFM topography image (Figure 4.52) of the modified photo-
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plasmonic substrate even after 15 minutes anneal at 150°C. To further characterize these 

structures we measured the reflectance from three substrates- namely the reference un-

annealed (pristine) array, 1 minute annealed array and 10 minute annealed array at 150°C 

(Figure 4.53). Since the final devices have a ZnO layer the reflection measurements (Figure 4.53) 

were done after depositing the ZnO layer. The total reflectance for the 10 min anneal substrate 

is slightly broadened, lower in magnitude, and is shifted to longer wavelengths, in comparison to 

the reference un-annealed substrate. A similar trend is observed for the 1minute annealed 

substrate but the effect it is much less pronounced, with the reflectance following the pristine 

sample more closely. The diffuse reflectance has changed considerably for the 10 minute 

anneal. The diffuse reflectance decreases at short wavelengths (<600 nm), but increases at long 

wavelengths between 800-1000 nm. We attribute this to the formation of small Ag particles 

which tend to scatter light at longer wavelengths. However these small Ag particles also absorb 

strongly at shorter wavelengths, and likely decrease the diffuse reflectance.   

 

Figure 4.53: Total reflection of modified photonic-plasmonic structure 
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Identical nc-Si:H devices with 0.9 µm thickness were fabricated on the reference substrates 

and the two modified photonic-plasmonic substrates after 1 and 10 minute annealing. The 

external quantum efficiency (EQE) was measured for these three samples (Figure 4.54), at -1V to 

ensure complete collection. Also shown for comparison is a solar cell grown on a flat Ag ZnO 

substrate. There is a large improvement (~28%) of the EQE derived Jsc between the flat and the 

periodically textured substrate. The EQE derived Jsc is 16 mA/cm2 for the flat device, compared 

with 20.5 0.5 mA/cm2 for the un-annealed device, indicating a 28% enhancement. The EQE Jsc 

is 20.4 0.5 mA/cm2 and 20.0 0.5 mA/cm2 for the 1 minute and 10 minute annealed devices, 

indicating no significant improvement in the current after adding the additional random texture 

 

Figure 4.54: EQE on 0.9µm thick nc-Si device fabricated on different types of photo-

plasmonic substrates 

The EQE of all three photonic-plasmonic devices are very similar. Only small changes are 

observed between the annealed and un-annealed devices. For an even closer comparison we 

measured the EQE enhancement ratio from the photonic-plasmonic substrate (Figure 4.55). 

There is little difference between 1 minute anneal and the pristine sample, as expected from the 

very similar measured total reflectance.  For the 10 minute anneal substrate there is a slight 

increase in absorbance at longer wavelengths, but this change is similar to the standard 
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deviation or variation from sample to sample. Furthermore, the devices had a Voc ~0.45V and fill 

factor FF ~0.55 that did not vary significantly with annealing. Hence there is no statistically 

significant increase in the EQE or cell performance on incorporating random features with the 

photonic plasmonic substrates.  

 

Figure 4.55: Enhancement in the absorption in modified photo-plasmonic substrates to 

pristine 

4.5 Additional methods  

Germanium has a better absorption coefficient than silicon, and if we can incorporate Ge in 

our cells we can increase the effective absorption in the cell. A superlattice (SL) cell consists of 

alternate layer of a-Si:H and nc-Si:H and a method to increase absorption is to incorporate 

germanium in the amorphous layer of the superlattice is studied by Nayan et. al. [61]. The 

purpose of the thin a-(Si,Ge) layer is to increase absorption in the solar cell, since a-(Si,Ge) has a 

higher absorption coefficient than nano Si at wavelength of ~600-700 nm. The amorphous layer 

is deposited using the same discharge as for the nano crystalline phase, but at a much lower 

power level. In case of the amorphous layer a mixture of silane germane and hydrogen is used 

whereas germane is turned off during the nano crystalline growth phase. Multiple cycles of 
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growth are used to build up the total thickness of the cell. The bandgap of the amorphous layer 

is controlled by changing the silane/germane ratio during growth. A schematic of the device 

structure with a superlattice is shown in Figure 4.56(a).  

 

 

Figure 4.56: (a)Schematic diagram of a superlattice device with a-Si,Ge/nc-Si on a photo-plasmonic substrate 

and (b) simulation result for 10 layers of nc-Si:H and a-(Si,Ge):H SL [61] 

Furthermore, we also show the use of Ge in the super lattice structure to improve the 

current density. The addition of Ge in the amorphous layer of the super lattice helps to enhance 

the absorption especially for λ>600nm as shown by simulation for 10 alternating layers of a-

(Si,Ge):H and nc-Si:H is plotted in Figure 4.56(b). To exemplify the statement we made device 

with different flows of Ge in the superlattice by varying the flow of GeH4. The EQE curves are 

plotted in Figure 4.57(a), showing the increase in EQE with increase in the ratio of 

GeH4/(SiH4+GeH4) flows. The absorption coefficient also improves when we make the a-(Si,Ge):H 

layer thicker in each of the cycle, which leads to increase in the EQE at longer wavelengths (600-

800nm) shown in Figure 4.57(b). 

In Figure 4.58, we show the un-optimized EQE of SL devices fabricated on nano-bump 

substrate and a similar device on SS, in which we can clearly see the strong absorption in longer 

wavelengths. The fabrication of superlattice devices with a-(Si,Ge):H fabrication is not simple, as 

including a thin a-(Si,Ge) layer in the superlattice does improve the absorption there is bandgap 

mismatch between the layers which leads to poor quality devices due to lack of collection of 

carriers with the in-built field. To tackle this issue we dope the a-(Si,Ge) layers with ppm amount 

of Phosphine gas during deposition which improves the devices quality/carrier collection. Also, 
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the nc-Si layer is doped small amount of TMB to avoid cross contamination from residual 

phosphine 

 

  

Figure 4.57: Absorption enhancement in SL device with (a) increasing Ge content in a-(Si,Ge) layer (b) 

increasing thickness of a-(Si,Ge) layer in the SL [61] 

 

Figure 4.58: EQE plot for SL device with a-(Si,Ge):H fabricated on nano-bump structures 

  



www.manaraa.com

130 
 

5. Summary 

This chapter summarizes the work done with important results and provides directions for 

future work 

5.1 Conclusions 

The main objective of the thesis was to look at the feasibility of periodic texturing to 

enhance the absorption in thin film silicon solar cells while making it industrially feasible to 

apply in a cost effective manner. The work done to achieve these goals is summarized as 

follows. 

 We show the methodology for producing randomly roughened structure namely 

etched ZnO:Al and annealed silver, and the procedures to optimize them for thin 

film silicon solar devices. Both a-Si:H and nc-Si:H devices were fabricated on the 

randomly textured substrates and we showed 25-30% improvement of the current 

density relative to planar cells. 

 Design of a new photonic structure is shown which predicted higher absorption in 

the solar cells by coupling photons into wave guiding modes such that they stay in 

absorber layer. We showed experimentally that these structures can be fabricated 

by inexpensive nano-imprinting technology which can be ramped up to roll to roll 

processing for commercial purposes having high throughput in manufacturing solar 

cells. 

 The use of plastic substrates is feasible for production of thin film silicon solar cells 

which would reduce the cost and help in developing flexible PV modules that are 

well suited for building-integrated applications and for portable, foldable, PV power 

products.  

 The plastic substrates with photonic structure show a current enhancement of over 

30% over planar plastic substrates. We have also discussed various challenges that 

we faced during their fabrication and discussed our methodology for solving the 

problems. 

 We also show the fabrication of a-Si:H and nc-Si:H cells on different plastic 

substrates namely PEN which has maximum working temperature of 200⁰C and 

kapton substrates which could handle up to 275⁰C. The introduction of a polymer 
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coated SS substrate has also been discussed which is flexible and can handle higher 

temperatures of 300⁰C. 

 The use of plasmonics has been also incorporated along with the photonic 

characteristics of the structure to form a photonic–plasmonic structure. By using 

periodic structures we have the photonic effect and by using favorable geometry i.e. 

nano cones we can couple the surface plasmons polaritons to wave guiding modes 

to get increased absorption. The differences in randomly textured method and the 

new method of increasing absorption with periodic structures have been also 

discussed. These structures perform better than a structure with only a photonic 

structure. 

 Micromorph tandem cells have been shown with thin nc-Si:H layers (<1µm) to give 

an efficiency just below 10% (9.9%). 

 A comparison of all the above structures have been studied experimentally showing 

that the best cell is found to be on the photonic-plasmonic structure. The 

experiment is done by fabricating all the devices at similar conditions. 

 A modified structure is also studied where intentional controlled randomness is 

built-up in a controlled manner on the photonic-plasmonic structures. The device 

performance is not statistically different from the photonic-plasmonic structures 

although trend is towards decreasing the absorption in cells. 

 A method of using Ge in the amorphous cycle of amorphous silicon growth has been 

suggested which can lead to increased absorption in the Ge devices. 

5.2 Future Directions 

 Cross-sectional imaging of the structures would give us an idea of the structure 

conformity after the device has been fabricated. 

 Transmission electron microscopy images can be done to look at the formation of 

the superlattice structure. In the designed structures one direction is to look at the 

regions with sharp edges in textured substrates, especially for initiation of cracks or 

defects. 

 Doping germanium in the devices leads to very good current enhancement, but can 

be done to optimize the cell to make thin cells for tandem solar cells. The cell 



www.manaraa.com

132 
 

optimization is required to get high efficiency especially in terms of carrier collection 

and increasing open circuit voltage. 

 Ultra-thin silicon solar cells has been studied by various groups especially for a-Si:H 

cells to reduce light induced degradation. The same concepts can also be applied to 

the periodic structures. 

 Employing silicon oxide SiOx layers as the doped layer can help the light 

management for the cells as it has a higher bandgap than silicon and can be 

employed also as intermediate reflector which can decrease the thickness of top a-

Si:H layer.  In addition SiOx can also be the junction layer in tandem cells leading to 

reduced loss in photons. It can act as the dielectric layer between metal and the 

semiconductor hence replace ZnO:Al from our present structure, allowing all 

fabrication steps in a single chamber. The use of SiOx has spurred much worldwide 

work and has led to high efficiency a-Si:H and nc-Si:H cells. 
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Appendix: Novel hybrid amorphous/organic tandem junction 

solar cell 

Modified from a paper submitted to Journal of Photovoltaics 

Sambit Pattnaik, Teng Xiao, R Shinar, J Shinar and V. L. Dalal 

Due to their potential ultralow-cost, organic solar cells (OSCs) are a promising technology. 

Bulk heterojunction OSCs have achieved power conversion efficiency (PCE) of ~10%, yet even 

this is far below that of inorganic cells. Typical OSCs suffer from a narrow range of photon 

absorption. Previous efforts addressed this problem by fabricating tandem OSCs, with cells 

absorbing in complementary bands. However, their efficiency remains far below that of 

inorganic tandem cells, and importantly, they do not address the problem of OSC degradation. 

This paper describes radically new designs of tandem junction cells based on a combination of 

an amorphous (Si,C):H cell and a P3HT:PCBM cell. The individual cells can be connected 

electrically in series or in parallel, with the band gaps of the inorganic materials adjusted to 

match the currents in the tandem units. The un-optimized series-connected PCE obtained was 

increased by 25% by using a tandem cell arrangement.  The tandem designs also address the 

critical problem of light-induced degradation, significantly reducing it.  

6.  

6.1 Introduction  

OSCs are an important photovoltaic technology for solar energy conversion due to their 

potential ultralow cost and promise as easy to fabricate, flexible and high-performance energy 

sources [1]. Recent bulk heterojunction OSCs, where a polymeric donor is coupled to an electron 

acceptor molecule, have achieved solar PCEs of ~ 10% [1-6]. However, as is well known, un-

encapsulated OSCs typically suffer from severe degradation upon exposure to light, moisture, 

and oxygen, with the decrease in the short circuit current ISC in some cases amounting to almost 

45% over ~200 hours of illumination [5, 7-14]. One of the reasons for the limits on the efficiency 

of the current generation of OSCs is the relatively poor absorption of organic cells. For example, 

the commonly used P3HT:PCBM (where P3HT is poly(3-hexylthiophene) and PCBM is 1-(3-

methoxycarbonyl)-propyl-1-phenyl-(6,6)C61) system has a strong absorption in the ~450-625 nm 

range, but poorer absorption below ~450 nm or beyond ~625 nm as shown in Figure 6.1.1. The 

narrow absorption range is typical of most organic PV materials and leads to a considerable loss 
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in solar conversion efficiency for organic solar cells. The obvious way to overcome such 

efficiency loss is to use a tandem solar cell structure, where one can use organic materials with 

complementary absorption spectra [15-23]. However, such systems are not optimal from a 

design viewpoint, in that they do not approach the ~42% efficiency of inorganic crystalline 

tandem junction cells [4], or the ~20% efficiency of inorganic thin film cells[4]; A less obvious 

way is to use a combination of an inorganic material and an organic material with 

complementary absorption spectra in a tandem arrangement. In this paper, we pursue this less 

obvious combination with the a-(Si,C):H cell as the first cell and the organic P3HT cell as the 

second cell. 

 

 

Figure 6.1.1: Absorption of P3HT film 

 In this paper, we show that radically new design of tandem cells, which includes a 

combination of an inorganic thin-film cell, an intermediate transparent conductor, and an 

organic cell, can approach the high efficiency expected from a tandem cell arrangement. This 

design also addresses the critical problem of degradation due to light exposure. The design is 

such that one can electrically connect the cells either in series or in parallel (i.e., with separate 

electrical connections), as the need may be, and thus potentially avoid the difficult problem of 

current matching between the two cells. The experiments prove the concept and demonstrate 

the expected high VOC ~ 1.5 V in the series-connected tandem combination of amorphous a-

(Si,C):H and P3HT:PCBM-based cells. The overall PCE increased by ~25% when the cells were 
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connected in series compared to the efficiency of the organic cell by itself. The external 

quantum efficiency (EQE) data measured on the individual cells confirm that both cells 

contribute to the power. We note that for improved solar cell stability, a-(Si,C):H, rather than a-

Si:H, is the appropriate combination for the P3HT:PCBM-based cell. For other organic units, we 

have the flexibility of using other a-Si:H alloys, either with varied levels of incorporated C or with 

Ge.   

6.2 Experimental Details 

The two fundamental designs tested are shown in Figure 6.2.1. In Figure 6.2.1(a) the organic 

cell is fabricated on indium tin oxide (ITO) that covers the inorganic cell with both units on the 

same side of the substrate (Design A); that is, the units are connected optically and electrically in 

series. In the design shown in Figure 6.2.1(b) the inorganic cell is fabricated on one side of the 

glass substrate (coated with ZnO), and the organic cell is fabricated on ITO on the opposite side 

of the same glass substrate (Design B), i.e., the units can be connected independently, or by 

shorting the ZnO and the ITO, in series.  

 

Figure 6.2.1: Schematic Diagram of cells (a) Design A and (b) Design B 

The inorganic cell is of the standard p-i-n or n-i-p type [24-26], with all three layers, p, i, and 

n containing Si, C, H and appropriate dopants. The organic cell consists of the usual 

PEDOT:PSS/P3HT:PCBM/metal configuration [27]. The Tauc bandgap of the a-(Si,C):H intrinsic 

layer (~ 2 eV) and its thickness (~80nm) are selected so as to match the current produced in the 
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organic cell if a series electrical connection is to be used. The p+ and n+ layers are also 

fabricated from a-(Si,C):H so that light can be transmitted through them without significant 

absorption. This cell was deposited using standard PECVD techniques for depositing amorphous 

solar cells. Next, an ITO layer of ~280 nm is sputtered at 250ºC using a DC-magnetron sputtering 

at 5 mTorr onto the n+ a-(Si,C):H layer so as to provide an ohmic contact to the n+ layer. The 

next layer is a PEDOT:PSS layer spin-coated on the ITO layer as a hole extraction layer [1], which 

also reduces  the RMS surface roughness of ITO from ~4.5 nm to  ~2.7 nm. The second cell 

deposited onto this layer is an organic P3HT:PCBM bulk-heterojunction cell  deposited using a 

spin-coating, the fabrication of the organic cell is detailed in a previous manuscript [18]. A Ca/Al 

metallic contact provides the electron extracting contact for the organic cell. The fabrication 

procedure for Design A has been shown diagrammatically in Figure 6.2.3, similar methods are 

followed for design B also. The intermediate ITO layer can also be contacted independently to 

study the characteristics of each of the individual cells. As shown later, a major advantage of 

these designs is in filtering of high-energy photons that may otherwise damage the organic cell. 

The a-(Si,C):H cell is provided with a transparent conducting oxide (TCO) contact to let in light. 

Current matching is not necessary if the two cells are not electrically in series, but are connected 

to their respective loads in independent circuits (Design B). In that case, both cells can be used 

separately, though they are optically in series, with the light passing first through the top 

inorganic cell. 

 

Figure 6.2.2: Tauc plot for the i-layer of the a-(Si,C):H cell 
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Figure 6.2.3: Fabrication procedure for cell in Design A 

6.3  Results and Discussion 

6.3.1 Device Results 

The illuminated I-V curves for the tandem cells of designs A and B are shown in Figure 

6.3.1Figure 6.2.1. Figure 6.3.1(a) shows also the I-V curve of the reference single organic cell and 

that of the inorganic unit of the tandem as in design A. Figure 6.3.1(b) shows also the I-V curves 

of the single units that comprise the tandem cell of design B. The single thin inorganic unit of 

design A showed a PCE of 3.9% and VOC ~ 0.95 V. The organic cell when illuminated directly is 

typically capable of ~4.5% efficiency with VOC ~ 0.61 V, as seen in the illuminated I-V curve of 

Figure 6.3.1(a). Figure 6.3.1(c) shows the normalized EQE of the inorganic unit of design A 

tandem and that of the organic reference cell. Similar EQE data were obtained for the design B 

tandem as shown in Figure 6.3.1(d). As seen, the inorganic units were successfully designed to 

match the current of the organic cell. The tandem I-V curves clearly show VOC ~ 1.5 V, the 
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approximate sum of the voltages of each cell, proving that both cells are contributing to the VOC. 

The PCE of the un-optimized design A tandem junction cell is ~5.6% (an increase of ~24% 

compared to the single unit OSC), and though this structure was not yet optimized, it shows a 

promising new concept with the flexibility to change the inorganic materials so as to match 

organic cells based on other materials.  

The interesting thing to observe is that the fill factor of the tandem cell is exceptionally good, 

77%, thus proving that the intermediate contacting layer, ITO, is an excellent tunnel-

recombination junction for both electrons and holes. The use of ITO with a very low sheet 

resistivity of ~2-3x10-4 ohm-cm, which is transparent in absorption region of the organic-

inorganic cells, is a major achievement. To show how important this intermediate ITO layer is for 

the high performance of the cell, we contrast our results for the fill factor with the results of a 

previous work from Kim et al. on a-Si/P3HT:PCBM tandem cell [28].  shows the IV curve 

obtained for their cells, showing significant collection problems in the tandem cell. In Fig. 8, we 

show the external quantum efficiency (EQE) data for our tandem cell, showing an excellent 

match in current generated by the first and the second cells. To measure the EQE on tandem 

devices a secondary light source was used to saturate the top and bottom cells by external blue 

and red bias light illumination, respectively. That is, saturation with blue light yields the EQE for 

the organic cell, and with red light, for the inorganic cell. 

Further proof that both cells are contributing to the current comes from measuring the EQE 

curve for each cell. Very clearly, from the QE data, the a-(Si,C):H-based cell primarily absorbs 

blue photons, and the organic cell primarily absorbs the green-yellow-red photons, as illustrated 

in Figure 6.3.3. We note that the absorbance of the inorganic cell in the ~400 - 475 nm range is 

stronger than that of the OSC and while this strong absorbance by the inorganic cell reduces the 

absorption by the organic cell in that wavelength range, the overall performance of the tandem 

structure improved relative to the performance of the OSC alone.  
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Figure 6.3.1: Illuminated I-V curves of (a) (Design A)-Tandem cell with that of its thin a-(Si,C):H-based cell, and 
that of the reference organic cell (b) (Design B) tandem cell and those of its thin inorganic and organic units. 
Normalized EQE of the inorganic unit (blue circles and line) of design A and that of the standard organic unit (red 
squares and line) of cells in (c) Design A and (d) Design B 

 

Figure 6.3.2: I-V curve of a tandem cell (blue and red) prepared by Kim et al without using an intermediate ITO 
layer [28]. 
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6.3.2 Stability of Organic Solar cells 

Another major advantage of these new tandem structures is that the high-energy photons 

are absorbed by the top inorganic cell as shown in Figure 6.3.3. Therefore, they are not available 

to contribute to the degradation of the OSC. One expects that high energy photons would do 

more damage to the organic cell than lower energy photons. Thus, the intrinsic stability of the 

tandem structure should be better than that of an organic cell by itself.  

 

Figure 6.3.3: Demonstration of the light absorption by the tandem inorganic-organic cell with the high-energy 
photons absorbed by the inorganic cell 

This expected behavior was confirmed by doing a careful experiment in which the organic 

cell was exposed to the full spectrum of sunlight at 2X sun intensity (200 mW/cm2 form an Oriel 

xenon simulator) for 100 hours in a nitrogen atmosphere and its performance measured 

continuously during that period. Then, an identical companion cell was shielded with a filter 

made from the a-(Si,C):H cell similar to that of Figure 6.2.1, and the cell was exposed again to 

illumination from the xenon source. Care was taken to increase the illumination intensity falling 

on the organic cell (by using a lens) so that it produced exactly the same current as with full 

solar spectrum exposure, ~ 20 mA/cm2, so that meaningful comparisons of stability could be 

made for the two types of exposure. The results are shown in Figure 6.3.4(b).  As seen from that 

figure, while a reduction of ~9% in ISC and ~4% in the VOC were observed for the organic cell in 

~100 hours of 2-suns irradiation (initial ISC ~20 mA/cm2) with a full solar spectrum irradiation, 
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those values were reduced to ~4% and <2%, respectively, due to the presence of the a-(Si,C):H. 

We note that the initial ISC and PCEs (~4.5%) of both organic cells tested were similar prior to the 

degradation measurements and the two cells were made in the same run.  

 

Figure 6.3.4: (a) Photograph of the stability measurement system and (b) Relative change in Voc and Jsc of OSC 
on exposure for 100hrs 

 To confirm that there were significant differences occurring in the fundamental material 

properties when the organic cell was exposed to different spectral content of radiation, we 

measured EQE of the device under short circuit conditions. These results are shown in Figure 

6.3.5(a). It distinctly shows that there is a reduction in the EQE, corresponding to the reduction 

in currents, and that the reduction is less when the organic cell is shielded from high energy 

photons. To further confirm that the changes in the QE, currents and voltages are due to 

fundamental changes in the properties of P3HT/PCBM when it is subjected to different spectra 

of light, we measured defect densities using the capacitance-frequency technique [29]. These 

results are shown in Figure 6.3.5(b), which clearly shows a large increase, in defect density when 

the cell is subjected to the full spectrum of simulated sunlight as opposed to a filtered spectrum. 

These results are different from previous work [30] on small changes in photo-conductivity of 

P3HT/PCBM when subjected to light alone, since a photovoltaic device is a minority carrier 

device whose lifetime, and therefore the QE is extremely sensitive to changes in mid-gap states, 

whereas the photo-conductivity device is a majority carrier device, which could be quite 

insensitive to changes in mid-gap densities if the majority carrier mobility is much larger than 
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the minority carrier mobility, as is the case for P3HT, and the recombination statistics favor 

changes in minority carrier lifetime but not of majority carriers [31]. 

 

Figure 6.3.5: (a) EQE curves for organic only samples measured pristine(control), after degradation for ~100hrs 
in N2 where simulated sunlight shines on the organic sample through an a-(Si,C):H filter (with filter) and (without 
filter) (b) Defect density of the organic only device in above mentioned conditions 

Note that a tandem arrangement automatically reduces the degradation in the fill factor, 

since the top cell, being relatively stable, anchors the fill factor of the tandem arrangement even 

in the presence of degradation of the bottom (organic) cell. Note also that while we have used 

an a-(Si,C):H-based cell for demonstrating the concept, other materials, such as (Zn,Cd)Te [32] 

with appropriate band gaps, can also be used for the inorganic cell. Since this cell is deposited 

first, the deposition can be done at elevated temperatures, followed by lower-temperature 

deposition of the organic cell on the other side of the substrate or on a transparent conducting 

electrode on the inorganic cell.  

6.4 Potential of higher efficiency hybrid tandem cells 

While this paper has shown a first demonstration of the success of the hybrid tandem cell 

approach, albeit at a relatively low efficiency (5.7%), it is useful to discuss how one can increase 

the conversion efficiency significantly. Obviously, one needs an organic material with more 

complementarity in absorption than can be provided by P3HT. An a-Si:H cell can easily produce 

a current of 10-12 mA/cm2. The quantum efficiency of an a-Si:H cell will begin to decrease 

rapidly beyond ~650 nm. Therefore, the organic material must be such that it strongly absorbs 

in a complementary region, i.e., from~600-650 nm to ~900 nm. Such materials do exist, for 

example Furan-based polymers and benzotrithiophene-based polymers being developed 
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respectively by the Frechete group [33] and the McCulloch group [34]. Other polymers that have 

a low bandgap and a broader absorption range are also being developed [35]. When combined 

with the increase in current that can be offered by using photonic and plasmonic 

enhancements, it is reasonable to expect a Jsc of ~12 mA/cm2, a Voc of ~1.8-1.9 V, and a FF of 

80%, for a total conversion efficiency of ~17-18%. A triple junction cell is expected to exceed 

20%. All these cells can be fabricated using technology that is being developed currently. Such 

efficiencies would be revolutionary. For increasing the efficiency further, one can use a photonic 

or plasmonic approach to enhance infrared light absorption in the organic cell [21, 36-40] 

thereby increasing its current significantly. 

6.5 Conclusions 

In summary, we have shown how a novel tandem cell arrangement in an electrically series 

design, comprising a thin a-(Si,C):H based inorganic top cell, and an organic bottom cell, results 

in an improved PCE of 5.6% in an un-optimized series design, which is a ~24% increase relative 

to that of the OSC alone. The VOC of the tandem junction cells, ~1.5 V, is the sum of the values of 

the separate cells, as expected. Optimization of such tandem cells, deposited on a transparent, 

insulating substrate, can lead to significantly higher efficiencies. One can optimize the structures 

by manipulating the thickness of the cell and changing the C content so that the bandgap varies 

and the absorption in a-(Si,C):H precisely complements that of the organic cell. The new device 

materials and architecture allow for either series connection or electrically independent tandem 

arrangements, thereby eliminating the current matching problem. The new structure also 

reduces the degradation of the organic device by filtering the high-energy photons.  
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